Mitochondria are essential for proper neuronal morphogenesis and functions, as they are the major source of energy for neural development. The dynamic morphology of mitochondria determines the key functions of mitochondria. Several regulatory proteins such as dynamin-related protein 1 (Drp1) are required to maintain mitochondrial morphology via a balance between continuous fusion and fission. Activity of Drp1, a key regulator in mitochondrial fission, is modulated by multiple post-translation modifications and receptor interactions. In addition, numerous researches have revealed that the regulation of Drp1 activity and mitochondrial dynamics is closely associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. In this article, we concisely review the recent findings about the biological importance of Drp1-mediated mitochondrial fission in neurons under physiological and pathological conditions.
The present study was conducted to develop an effective method for establishment of porcine parthenogenetic embryonic stem cells (ppESCs) from parthenogenetically activated oocyte-derived blastocysts. The addition of 10% fetal bovine serum (FBS) to the medium on the 3rd day of oocyte culturing improved the development of blastocysts, attachment of inner cell masses (ICMs) onto feeder cells, and formation of primitive ppESC colonies. ICM attachment was further enhanced by basic fibroblast growth factor, stem cell factor, and leukemia inhibitory factor. From these attached ICMs, seven ppESC lines were established. ppESC pluripotency was verified by strong enzymatic alkaline phosphatase activity and the expression of pluripotent markers OCT3/4, Nanog, and SSEA4. Moreover, the ppESCs were induced to form an embryoid body and teratoma. Differentiation into three germ layers (ectoderm, mesoderm, and endoderm) was confirmed by the expression of specific markers for the layers and histological analysis. In conclusion, data from the present study suggested that our modified culture conditions using FBS and cytokines are highly useful for improving the generation of pluripotent ppESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.