BackgroundConcerns have developed for the possible negative health effects of radiofrequency electromagnetic field (RF-EMF) exposure to children’s brains. The purpose of this longitudinal study was to investigate the association between mobile phone use and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) considering the modifying effect of lead exposure.MethodsA total of 2,422 children at 27 elementary schools in 10 Korean cities were examined and followed up 2 years later. Parents or guardians were administered a questionnaire including the Korean version of the ADHD rating scale and questions about mobile phone use, as well as socio-demographic factors. The ADHD symptom risk for mobile phone use was estimated at two time points using logistic regression and combined over 2 years using the generalized estimating equation model with repeatedly measured variables of mobile phone use, blood lead, and ADHD symptoms, adjusted for covariates.ResultsThe ADHD symptom risk associated with mobile phone use for voice calls but the association was limited to children exposed to relatively high lead.ConclusionsThe results suggest that simultaneous exposure to lead and RF from mobile phone use was associated with increased ADHD symptom risk, although possible reverse causality could not be ruled out.
Radiofrequency (RF) radiation does not transfer high energy to break the covalent bonds of macromolecules, but these low energy stimuli might be sufficient to induce molecular responses in a specific manner. We monitored the effect of 1,763 MHz RF radiation on cultured human dermal papilla cells (hDPCs) by evaluating changes in the expression of cytokines related to hair growth. The expression of insulin-like growth factor-1 (IGF-1) mRNA in hDPCs was significantly induced upon RF radiation at the specific absorption rate of 10 W/kg, which resulted in increased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL-2) and cyclin D1 (CCND1) proteins and increased phosphorylation of MAPK1 protein. Exposure to 10 W/kg RF radiation 1 h per day for 7 days significantly enhanced hair shaft elongation in ex vivo hair organ cultures. In RF-exposed follicular matrix keratinocytes in the hair bulb, the expression of Ki-67 was increased, while the signal for terminal deoxynucleotidyl transferase dUTP nick end labeling was reduced. From these results, we suggest that 1,763 MHz RF exposure stimulates hair growth in vitro through the induction of IGF-1 in hDPCs.
This paper describes an implementation method and the results of numerical mobile phone models representing real phone models that have been released on the Korean market since 2002. The aim is to estimate the electromagnetic absorption in the human brain for casecontrol studies to investigate health risks related to mobile phone use. Specific absorption rate (SAR) compliance test reports about commercial phone models were collected and classified in terms of elements such as the external body shape, the antenna, and the frequency band. The design criteria of a numerical phone model representing each type of phone group are as follows. The outer dimensions of the phone body are equal to the average dimensions of all commercial models with the same shape. The distance and direction of the maximum SAR from the earpiece and the area above -3 dB of the maximum SAR are fitted to achieve the average obtained by measuring the SAR distributions of the corresponding commercial models in a flat phantom. Spatial peak 1-g SAR values in the cheek and tilt positions against the specific anthropomorphic mannequin phantom agree with average data on all of the same type of commercial models. Second criterion was applied to only a few types of models because not many commercial models were available. The results show that, with the exception of one model, the implemented numerical phone models meet criteria within 30%. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ⓒ
This paper reports the electromagnetic field (EMF) exposure levels from fifth generation (5G) services. Three mobile operators in South Korea launched the world's first 5G New Radio networks using the 3.5 GHz band in April 2019. The transmitted power of the uplink slots and the synchronization signal reference signal received power (SS-RSRP) from user equipment (UE) were measured in Seoul. The power samples, averaged over a 1-s duration, were obtained for a traffic period of approximately 270 h from October 2019 to early February 2020 using the file transfer protocol while driving along the side streets in residential areas of Seoul. The measurement results show that the time-average level when exposed to a beam sweep of the base stations was less than 5 µW/m 2 . However, the UE transmitted power level approached the maximum for a considerable period of the total measurement time owing to the extremely low SS-RSRP level of the base stations.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. In this study, to investigate the effect of microglial elimination on AD progression, we administered PLX3397, a selective colony-stimulating factor 1 receptor inhibitor, to the mouse model of AD (5xFAD mice). Amyloid-beta (Aβ) deposition and amyloid precursor protein (APP), carboxyl-terminal fragment β, ionized calcium-binding adaptor molecule 1, synaptophysin, and postsynaptic density (PSD)-95 levels were evaluated in the cortex and hippocampus. In addition, the receptor density changes in dopamine D2 receptor (D2R) and metabotropic glutamate receptor 5 were evaluated using positron emission tomography (PET). D2R, tyrosine hydroxylase (TH), and dopamine transporter (DAT) levels were analyzed in the brains of Tg (5xFAD) mice using immunohistochemistry. PLX3397 administration significantly decreased Aβ deposition following microglial depletion in the cortex and hippocampus of Tg mice. In the neuro-PET studies, the binding values for D2R in the Tg mice were lower than those in the wild type mice; however, after PLX3397 treatment, the binding dramatically increased. PLX3397 administration also reversed the changes in synaptophysin and PSD-95 expression in the brain. Furthermore, the D2R and TH expression in the brains of Tg mice was significantly lower than that in the wild type; however, after PLX3397 administration, the D2R and TH levels were significantly higher than those in untreated Tg mice. Thus, our findings show that administering PLX3397 to aged 5xFAD mice could prevent amyloid pathology, concomitant with the rescue of dopaminergic signaling, suggesting that targeting microglia may serve as a useful therapeutic option for neurodegenerative diseases, including AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.