Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among betathalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.
Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.
ABSTRACT.There have been few studies on the mutations that cause heterozygous beta-thalassemia and how they affect the iron profile. One hundred and thirty-eight individuals were analyzed, 90 thalasemic β 0 and 48 thalasemic β + , identified by classical and molecular methods. Mutations in the hemochromatosis (HFE) gene, detected using PCR-RFLP, were found in 30.4% of these beta-thalassemic patients; heterozygosity for H63D (20.3%) was the most frequent. Ferritin levels and transferrin saturation were similar in beta-thalassemics with and without mutations in the HFE gene. Ferritin concentrations were significantly higher in men and in individuals over 40 years of age. Transferrin saturation also was significantly higher in men, but only in those without HFE gene mutations. There was no significant difference in the iron profile among the β 0 and β + thalassemics, with and without HFE gene mutations. The frequency of ferritin values above 200 ng/mL in women and 300 ng/ mL in men was also similar in β 0 and β + thalassemics (P > 0.72). Our conclusion is that ferritin levels are variable in the beta-thalassemia, trait regardless of the type of beta-globin mutation. Furthermore, HFE gene polymorphisms do not change the iron profile in these individuals.
BackgroundIn Brazil, there have been no previous studies of Toxoplasma gondii infection in sickle cell anemia patients and carriers of severe forms of beta-thalassemia. This study evaluated T. gondii infection in patients with beta-hemoglobinopathies.MethodsA total of 158 samples, 77 (48.7%) men and 81 (51.3%) women, were evaluated. Three groups were formed: G1 (85 patients with sickle cell disease); G2 (11 patients with homozygous beta-thalassemia; G3 (62 patients with heterozygous beta-thalassemia). ELISA was employed to identify anti-T. gondii IgM and IgG antibodies, and molecular analysis was performed to determine beta-hemoglobin mutations. Fisher’s exact test was used to compare frequencies of anti-T. gondii IgM and IgG antibodies in respect to gender and age.ResultsAnti-T. gondii IgG antibodies were found in 43.5% of individuals in G1, 18.1% in G2 and 50% in G3. All samples from G1 and G2 were seronegative for anti-T. gondii IgM antibodies, but 3.2% from G3 were seropositive. Considering anti-T. gondii IgG antibodies, no statistical significant differences were found between these groups nor in seroprevalence between genders within each group. Despite this, comparisons of the mean ages between G1, G2 and G3 were statistically significant (G2 vs. G1: p value = 0.0001; G3 vs. G1: p-value <0.0001; G3 vs. G2: p-value = 0.0001).ConclusionA comparison by age of patients with sickle cell anemia showed a trend of lower risk of infection among younger individuals. Therefore, this study demonstrates that T. gondii infection occurs in patients with beta-thalassemia and sickle cell anemia in Brazil as seen by the presence of anti-T. gondii IgM and IgG antibodies.
Anemia is a public health problem that can have different causes, such as iron deficiency, vitamin deficiency, inflammation, hemolytic anemias, and anemias associated with bone marrow disease. Anemia shows a decrease in the concentration of hemoglobin, a pigmented molecule in the erythrocytes. The objectives of this review were to highlight the impact of nutritional factors on morbidity and mortality caused by anemia and to present different non-invasive approaches that use a smartphone to analyze hemoglobin levels to detect anemia. According to the records of the Brazilian Unified Health System (SUS, in the Portuguese acronym), ∼ 440,000 people checked in hospitals due to anemia between January 2015 and April 2020, with 215,000 deaths. The government spent ∼ 294 million Brazilian Reais (more than 50 million US dollars) on anemia hospitalization cases during this period. There is a worldwide search to provide noninvasive diagnostics and mobile health (mHealth) tools to help diagnosing anemia. The smartphone appears to be a viable device to detect anemia by a camera with colorimetric analysis of images providing a quantitative, instantaneous, and noninvasive result. These images can be obtained as a photograph or extracted from video frames. The review presents three different methods of detecting anemia using a smartphone: i) photoplethysmograph from video obtained from the tip of the index finger, ii) photo of the palpebral conjunctiva, and iii) fingernail photo app. Therefore, it seems urgent that these approaches may be applied in routine clinical diagnosis to allow remote, needy, low-tech locations to have access to anemia screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.