Background Skin aging is the most common dermatological problem caused by intrinsic and extrinsic factor, such as exposure to (ultraviolet) UV rays. Chlorogenic acid (CA) is a phenolic compound which is known for its antioxidant properties against oxidative stress. Objective This study investigates the antiaging and anti-inflammatory properties of CA on UV-induced skin fibroblast cells. Methods Anti-inflammatory properties of CA were assessed by measuring inflammatory-related proteins IL-1β and TNF-α, while antiaging properties of CA were assessed by measuring reactive oxygen species (ROS), apoptosis, live and necrotic cells, and COL-3 gene expression level. Results Treating UV-induced skin fibroblast cells with CA decreased the level of ROS, IL-1β, TNF-α, apoptotic cells, and necrotic cells and increased live cells and COL-3 gene expression. Conclusion CA has the potential as the protective compound against inflammation and aging by decreasing the level ROS, pro-inflammatory cytokines IL-1β and TNF-α, apoptotic cells, and necrotic cells and by increasing live cells and COL-3 gene expression.
Background Prolonged exposure of free radicals, or known as reactive oxygen species (ROS), in hepatic cells may cause oxidative stress. Without proper treatment, it can induce liver injury and fatal hepatic disease, including cirrhosis. Red betel ( Piper crocatum Ruiz and Pav) is one of Indonesia’s medicinal plants that has been known to exhibit antioxidant, anti-inflammatory activities. This study aims to determine hepatoprotective effect of red betel leaves extract (RBLE) towards liver injury. Method Hydrogen peroxide-induced HepG2 cells were used as liver injury model·H 2 O 2 -induced HepG2 cells were treated with 25 µg/mL and 100 µg/mL RBLE. Several parameters were observed, including TNF-α level through ELISA; necrotic, apoptotic, dead, live cells; and ROS level through flow cytometry analysis; and GPX gene expression through qPCR. Result The study showed that treatment with RBLE were able to decrease TNF-α level; necrotic and death cells percentage; as well as ROS level. On the other hand, it were able to increase apoptotic and live cells percentage; as well as GPX gene expression. Low concentration (25 µg/mL) of RBLE treatment exhibited stronger anti-inflammatory activity as it was resulted in the lower TNF-α level and were able to switched hepatic cell death pathway from necrosis to apoptosis as shown by the shifted of apoptotic cells and necrotic cells percentage. This lead to lower death cells and ultimately improve live cells percentage. Meanwhile high concentration of RBLE (100 µg/mL) exhibited stronger antioxidant properties as indicated by lower ROS level and higher GPX gene expression. Conclusion Overall, this study was able to demonstrate hepatoprotective effect of RBLE towards liver injury model through its anti-inflammatory and antioxidant activities.
Background: Skin aging is a condition where skin is unable to retain both its physiological and structural integrity. Plants is the main source of phtytochemicals compound with wide range of biological activities. Through the efforts of ongoing scientific researches, an increasing number of plant extracts and phytochemicals have been showed promising result as anti-aging agent. Snake fruit (Salacca zalacca (Gaert.) Voss) is tropical plant belongs to the palm tree family (Arecaceae) that served as important crop in Indonesia. Despite its utilization, the phytochemical compound available in snake fruit, especially its peel have not been well documented. Present study aimed to elucidate the phytochemical constituent of snake fruit peel and its anti-aging potency.Materials and Methods: Snake fruit peel extract (SPE) was subjected to qualitative phytochemical assay, high performance liquid chromatography, and molecular docking towards protein related in skin aging.Results: The screening showed SPE contained phytochemical compound belong to flavonoid, tannin, phenol, triterpenoid, saponin and alkaloid. Thus, based on the analysis only chlorogenic acid was present in SPE whilst rutin and caffeic acid were not detected. The SPE was contained chlorogenic acid around 1.074 mg/g dry weight. Chlorogenic acid had the high binding affinity towards matrix metalloproteinase (MMP)-1 (-9.4 kcal/mol).Conclusion: Current findings may provide scientific evidence for possible usage of SPE and its compounds as antioxidant and anti-aging agent.Keywords: Salacca zalacca, phytochemical compound, high performance liquid chromatography, anti-aging
Aging is a natural process in human life and is triggered by the presence of free radicals (ROS). The use of antioxidants from natural ingredients is one of the breakthroughs to overcome aging and counteract the harmful effects caused by the free radicals. This study aimed to determine and compare the antioxidant activity of H2O2 scavenging and hyaluronidase inhibition of red dragon fruit peel extract (DFPE) and kaempferol-3-o-rutinoside (KOR) compounds. Dragon fruit peel extract (DFPE) is obtained through extraction by maceration method using 70% ethanol solvent. The design of this study included antioxidant and anti-aging activity assay of EKBN and KOR at the series concentration of 15.63; 31.25; 62.50; 125; 250; 500 µg/mL through H2O2 scavenging, as well as the DFPE and KOR hyaluronidase inhibition assay at the series concentration of 5.21; 10.42; 20.83; 41.7; 83.33; 166.67 µg/mL. EKBN shows that the average activity of H2O2 scavenging is lower than KOR. In addition, the IC50 values of KOR for H2O2 scavenging is lower (351.46±2.30ug/mL) than DFPE (409.64±23.17ug/mL). While, KOR also has higher values of inhibitory activity than of the DFPE. However, the IC50 value of KOR for hyaluronidase inhibition activity was 84.07±10.46µg/mL, equivalent to the IC50 value of DFPE (85.32±10.24µg/mL). The presence of antioxidant and anti-aging activity in the EKBN is probably caused by betalain and the KOR compound itself contained in red dragon fruit. The results of the paired-samples T-test on antioxidant activity and anti-aging of DFPE and KOR showed non-significant difference. Thus, DFPE has an equivalent antioxidant and anti-aging through H2O2 scavenging and hyaluronidase activity as possessed by the KOR compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.