The present study evaluated the effects and mechanisms of action of endothelin-1 (ET-1) on medullary and cortical blood flow (MBF and CBF, respectively). CBF and MBF were measured simultaneously by laser-Doppler flowmetry in anesthetized male Wistar rats. Bolus injection of ET-1 (1.0 nmol/kg iv) produced a sustained decrease in CBF (delta = -30%) and a transient increase in MBF (delta = +35%). The medullary vasodilation induced by ET-1 was observed with doses lower than that required to produce cortical vasoconstriction; was completely blocked by bosentan, a mixed ETA/B-receptor antagonist; and was mimicked by IRL-1620, a specific ETB-receptor agonist. In contrast, BQ-123, an ETA-receptor antagonist, failed to inhibit the ET-1-dependent medullary vasodilation but effectively blocked the cortical vasoconstriction induced by the peptide. Finally, inhibition of nitric oxide (NO) synthase completely abolished, whereas cylooxygenase inhibition attenuated, the effect of ET-1 on MBF. The data demonstrate that ET-1 exerts opposite effects on renal cortical and medullary circulation, i.e., ETA-receptor-mediated cortical vasoconstriction and ETB-mediated medullary vasodilation. Furthermore, the medullary vasodilation induced by ET-1 is dependent on the NO system and, to a lesser extent, on prostaglandin generation.
Muscle crush injury is often complicated by hemodynamic shock, electrolyte disorders, and myoglobinuric renal failure. In this study, we examined the involvement of the nitric oxide (NO) system in the development of muscle damage in an experimental model of crush injury induced by exertion of standardized mechanical pressure on tibialis muscle of rat. The intact limb served as a control. Four days after injury, the crushed muscle was characterized by extreme capillary vasodilatation as demonstrated by histological morphometric analysis. These changes were accompanied by muscle hyperperfusion as evaluated by measurements of femoral blood flow (ultrasonic flowmetry) and capillary blood flow (laser-doppler flowmetry). Treatment with Nomega-nitro-L-arginine methyl ester, a NO synthase (NOS) inhibitor, largely decreased the hyperperfusion. Furthermore, the expression of the different NOS isoforms, assessed by reverse transcription-PCR and immunoreactive levels, determined by Western blot, revealed a remarkable induction of the inducible NOS in the crushed limb. Similarly, endothelial NOS mRNA increased gradually after the induction of muscle damage. In contrast, the major muscular NOS, i.e., neuronal isoform remained unchanged. In line with the alterations in the mRNA levels, Western blot analysis revealed parallel changes in the immunoreactive levels of the various NOS. These findings indicate that muscle crush is associated with activation of the NO system mainly due to enhancement of iNOS. This may contribute to NO-dependent extreme vasodilatation in the injured muscle and aggravate the hypovolemic shock after crush injury.
The effects of sodium salts of various bile acids on the contractile force and the electrophysiological properties of rat ventricular muscle were studied in vitro. Primary, conjugated, and secondary bile acids were studied in a concentration range of 10(-9)-10(-6) mol/l, which corresponds to concentrations found in the plasma of patients with cholestatic jaundice. In general, the bile acid induced a negative inotropic effect which was manifested as a reduction in active tension, maximum rate of tension activation, and maximum rate of tension relaxation. Twitch duration and time to peak tension were unaffected by the bile acids. The negative inotropism was associated with a reduction in ventricular action potential duration. Resting potential, action potential amplitude, and maximum upstroke velocity of phase 0 depolarization were unaffected. Voltage clamp experiments in rat ventricular myocytes demonstrated that sodium taurocholate decreased the slow inward current and slightly increased the outward potassium current. Hence, these effects on the membrane currents are probably responsible for the negative inotropic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.