Increasing the open circuit voltage (Voc) is one of the key strategies for further improvement of the efficiency of perovskite solar cells. It requires fundamental understanding of the complex optoelectronic processes related to charge carrier generation, transport, extraction and their loss mechanisms inside a device upon illumination. Herein we report the important origin of Voc losses in methylammonium lead iodide perovskite (MAPI) based solar cells, which results from undesirable positive charge (hole) accumulation at the interface between the perovskite photoactive layer and the PEDOT:PSS hole transport layer. We show strong correlation between the thickness-dependent surface photovoltage and device performance, unraveling that the interfacial charge accumulation leads to charge carrier recombination and results in a large decrease in Voc for the PEDOT:PSS/MAPI inverted devices (180 mV reduction in 50-nm-thick device compared to 230-nm-thick one). In contrast, accumulated positive charges at the TiO2/MAPI interface modify interfacial energy band bending, which leads to an increase in Voc for the TiO2/MAPI conventional devices (70 mV increase in 50-nm-thick device compared to 230-nm-thick one). Our results provide an important guideline for better control of interfaces in perovskite solar cells to improve device performance further.
Metal halide perovskites (MHPs) have emerged as promising materials for light‐emitting diodes owing to their narrow emission spectrum and wide range of color tunability. However, the low exciton binding energy in MHPs leads to a competition between the trap‐mediated nonradiative recombination and the bimolecular radiative recombination. Here, efficient and stable green emissive perovskite light‐emitting diodes (PeLEDs) with an external quantum efficiency of 14.6% are demonstrated through compositional, dimensional, and interfacial modulations of MHPs. The interfacial energetics and optoelectronic properties of the perovskite layer grown on a nickel oxide (NiOx) and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate hole injection interfaces are investigated. The better interface formed between the NiOx/perovskite layers in terms of lower density of traps/defects, as well as more balanced charge carriers in the perovskite layer leading to high recombination yield of carriers are the main reasons for significantly improved device efficiency, photostability of perovskite, and operational stability of PeLEDs.
Backbone functionalisation of conjugated polymers is crucial to their performance in many applications, from electronic displays to nanoparticle biosensors, yet there are limited approaches to introduce functionality. To address this challenge we have developed a method for the direct modification of the aromatic backbone of a conjugated polymer, post-polymerisation. This is achieved via a quantitative nucleophilic aromatic substitution (SNAr) reaction on a range of fluorinated electron-deficient comonomers. The method allows for facile tuning of the physical and optoelectronic properties within a batch of consistent molecular weight and dispersity. It also enables the introduction of multiple different functional groups onto the polymer backbone in a controlled manner. To demonstrate the versatility of this reaction, we designed and synthesised a range of emissive poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)-based polymers for the creation of mono and multifunctional semiconducting polymer nanoparticles (SPNs) capable of two orthogonal bioconjugation reactions on the same surface.
Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one-step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short-circuit current (J sc ) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite-only devices. However, this increase in J sc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high-performance devices.
Imidazolium ionic side-group-containing fluorene-based conjugated polyelectrolytes (CPEs) with different π-conjugated structures, poly[(9,9-bis(8'-(3"-methyl-1"-imidazolium)octyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (F8im-Br) and poly [(9,9-bis(8'-(3"-methyl-are synthesized and utilized as an electron injection layer (EIL) in green-emitting F8BT polymer light-emitting diodes (PLEDs). Both CPE EIL devices significantly outperform Ca cathode devices; 17.9 cd A -1 (at 3.8 V) and 16.6 lm W -1 (at 3.0 V) for F8imBT-Br devices, 11.1 cd A -1 (at 4.2 V) and 9.1 lm W -1 (at 3.4 V) for F8im-Br devices, and 7.2 cd A -1 (at 3.6 V) and 7.0 lm W -1 (at 3.0 V) for Ca devices. Importantly, unlike the F8im-Br EIL devices, F8imBT-Br PLEDs exhibit much faster electroluminescence turn-on times (< 10 μs) despite both EILs possessing the same tethered imidazolium and mobile bromide ions. The F8imBT-Br devices represent, to the best of our knowledge, the highest efficiency in thin (70 nm) single-layer F8BT PLEDs in conventional device architecture with the fastest EL response time using CPE EIL with mobile ions. Our results clearly indicate the importance of an additional factor of EIL materials, specifically the conjugated backbone structure, to determine the device efficiency and response times.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.