Colloidal nanoparticle biosensors have received intense scientific attention and offer promising applications in both research and medicine. We review the state of the art in nanoparticle development, surface chemistry, and biosensing mechanisms, discussing how a range of technologies are contributing toward commercial and clinical translation. Recent examples of success include the ultrasensitive detection of cancer biomarkers in human serum and in vivo sensing of methyl mercury. We identify five key materials challenges, including the development of robust mass-scale nanoparticle synthesis methods, and five broader challenges, including the use of simulations and bioinformatics-driven experimental approaches for predictive modeling of biosensor performance. The resultant generation of nanoparticle biosensors will form the basis of high-performance analytical assays, effective multiplexed intracellular sensors, and sophisticated in vivo probes.Evolution has given rise to organisms of staggering complexity. Our now extensive knowledge of biological systems pales in comparison to the remaining mysteries. Unraveling these requires tools that probe the molecular machinery of life and provide detailed feedback on complex networks of subtle interactions. Such tools are cornerstones of biomedical research and practice, and improvements in these lead directly to a better understanding of fundamental biology, monitoring of health, and diagnosis of disease. Colloidal nanoparticle biosensors are a class of biological probe that will not only yield improved biological sensing but also provide a step change in our ability to probe the biomolecular realm. Nanoparticles can act as high-performance sensors because nanomaterials exhibit unique and useful behaviors not present in their bulk form: for example, bright tunable fluorescence from semiconductor nanoparticles and localized surface plasmon resonance (LSPR) phenomena in metallic nanoparticles. These particles exhibit intense responses to incident light (or other stimuli), and the ability to modulate this response by interaction with target analytes makes them excellent biosensor signal transducers. Outputs can be quantitative or qualitative depending on the functionality of
Semiconducting polymer nanospheres (SPNs) have been synthesized and encapsulated in phospholipid micelles by a solvent evaporation technique. Four different conjugated polymers were used, yielding aqueous dispersions of nanoparticles which emit across the visible spectrum. The synthesis was simple and easily reproducible, and the resultant nanoparticle solutions exhibited high colloidal stability. As these encapsulated SPNs do not contain any toxic materials and show favorable optical properties, they appear to be a promising imaging agent in biomedical and imaging applications. The SPNs were used in simple fluorescence imaging experiments and showed uptake in SH-SY5Y neuroblastoma and live HeLa cells. Carboxylic acid functionalized SPNs were also synthesized and conjugated to bovine serum albumin (BSA) by carbodiimide-mediated chemistry, a key step in the realization of targeted imaging using conjugated polymers.
The application of nanomaterials to detect disease biomarkers is giving rise to ultrasensitive assays, with scientists exploiting the many advantageous physical and chemical properties of nanomaterials. The fundamental basis of such work is to link unique phenomena that arise at the nanoscale to the presence of a specific analyte biomolecule, and to modulate the intensity of such phenomena in a ratiometric fashion, in direct proportion with analyte concentration. Precise engineering of nanomaterial surfaces is of utmost importance here, as the interface between the material and the biological environment is where the key interactions occur. In this tutorial review, we discuss the use of plasmonic nanomaterials in the development of biodiagnostic tools for the detection of a large variety of biomolecular analytes, and how their plasmonic properties give rise to tunable optical characteristics and surface enhanced Raman signals. We put particular focus on studies that have explored the efficacy of the systems using physiological samples in an effort to highlight the clinical potential of such assays.
Hybrid nanoparticles which incorporate multiple functionalities, such as fluorescence and magnetism, can exhibit enhanced efficiency and versatility by performing several tasks in parallel. In this study, magnetic-fluorescent semiconductor polymer nanospheres (MF-SPNs) have been synthesized by encapsulation of hydrophobic conjugated polymers and iron oxide nanoparticles in phospholipid micelles. Four fluorescent conjugated polymers were used, yielding aqueous dispersions of nanoparticles which emit across the visible spectrum. The MF-SPNs were shown to be magnetically responsive and simultaneously fluorescent. In MRI studies, they were seen to have a shortening effect on the transverse T(2)* relaxation time, which demonstrates their potential as an MR contrast agent. Finally, successful uptake of the MF-SPNs by SH-SY5Y neuroblastoma cells was demonstrated, and they were seen to behave as bright and stable fluorescent markers. There was no evidence of toxicity or adverse affect on cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.