Lipids are important entomopathogenic nematode nutritional components because they are energy reserves and serve as indicators of nematode quality. The composition and concentration of the media lipid component determine bacterial and nematode yields. Heterorhabditis bacteriophora and its symbiont, Photorhabdus luminescens, were cultured in media containing various lipid sources. As lipid concentration increased from 2.5% to 8.0% (w/v), the final yield and productivity [calculated from the number of infective juveniles (IJ)] increased significantly from 2.1 x 10(5) IJ ml(-1) to 2.8 x 10(5) IJ ml(-1) (P < 0.05) and from 8.9 x 10(5) IJ l(-1) day(-1) to 11.8 x 10(5) IJ l(-1) day(-1) (P < 0.05), respectively. The nematode yield coefficient (IJ per gram of media), however, decreased from 2.8 x 10(6) to 2.2 x 10(6) (P < 0.05), while recovery increased from 45.3% to 58.0% (P < 0.05). Bacterial cell mass remained constant at 4.6 mg ml(-1) with changing lipid content (P > 0.05). The largest nematode yield (2.8 x 10(5) IJ ml(-1)) was achieved within 8 days, using a medium containing an 8% (w/v) olive and canola oil (50:50 w/v) combination. Moreover, developmental synchrony was achieved in this medium with 96% infective juveniles. In short, lipid sources rich in mono-unsaturated fatty acids and poor in saturated fatty acids produced optimal nematode growth.
We tested biological control agents for the control of 3rd-instar scarab turfgrass pests, both for the masked chafer Cyclocephala hirta LeConte and the Japanese beetle, Popillia japonica Newman. The former species is endemic in California whereas the latter, although not yet established, constitutes a permanent serious threat to agriculture and horticulture in California. We conducted experiments using C. hirta in California and P. japonica in New Jersey. A field trial conducted in 2 different California turfgrass sites compared the field persistence in the absence of hosts of Bacillus thuringiensis Berliner subspecies japonensis Buibui strain, the milky disease bacterium, Paenibacillus (=Bacillus) popilliae (Dutky), and the entomopathogenic nematodes Steinernema kushidai Mamiya and Heterorhabditis bacteriophora Poinar to that of the organophosphate diazinon. Soil samples taken 0-70 d after applications were bio-assayed with P. japonica. Only diazinon and the entomopathogenic nematode S. kushidai caused substantial mortality and S. kushidai activity persisted significantly longer than diazinon activity. In greenhouse experiments, combinations of entomopathogenic nematode species usually resulted in additive mortality of scarab larvae. Combinations of S. kushidai and diazinon also resulted in additive mortality. In field trials, the efficacy of H. bacteriophora and especially S. kushidai and S. glaseri, was comparable to that of diazinon over 14-18 d. However, it is likely that at least S. kushidai would have outperformed diazinon over an extended period because of its longer persistence and potential for recycling in the hosts. S. kushidai, should it become commercially available, deserves further examination as an alternative to chemical white grub control especially as a highly compatible component of sustainable turfgrass management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.