Analyzing metabolites (small molecules <1 kDa) in body fluids such as urine and plasma using various spectroscopic methods provides information on the metabotype (metabolic phenotype) of individuals or populations, information that can be applied to personalized medicine or public healthcare.
We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats. Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0 ± 10.4%) and heart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influenced by microbial activities or modulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.farnesoid X receptor | gut microbiota | TGR5 | ultra-performance liquid chromatography mass spectrometry | G protein-coupled bile acid receptor 1 T he importance of gut microbiome variation in relation to human health and diverse diseases is now well-recognized (1-4). The microbiome is a virtual organ that performs many digestive and metabolic functions for the host, including enhanced calorific recovery from ingested foods and degradation of complex plant polysaccharides. Microbial communities have coevolved with man and show remarkable diversity dependent on topographical location and interperson variability (5). Co-evolution has refined the microbiome of organisms to a state where metabolic complementarity exists within the microbiota (6), and important biosynthetic/ metabolic pathways are provided for the host that significantly extend host metabolic capacity (3). As such, the mammalian host can be considered a superorganism (7), whose metabolism is the sum of that of both the host and the collective microbial community. The enterohepatic circulation provides a vehicle for this transgenomic metabolism, and bile acids, whose functional role in the global mammalian system is multifaceted, are an important class of metabolites that u...
Metabonomic/metabolomic studies can involve the analysis of large numbers of samples for the detection of biomarkers and confidence in the analytical data, generated by methods such as GC and HPLC-MS, requires active measures on the part of the analyst. However, quality control for complex multi-component samples such as biofluids, where many of the components of interest in the sample are unknown prior to analysis, poses significant problems. Here the repeat analysis of a pooled sample throughout the run, thereby enabling the analysis to be monitored and controlled using targeted inspection of the data and pattern recognition, is advocated as a pragmatic solution to this problem.
A method for performing untargeted metabolomic analysis of human serum has been developed based on protein precipitation followed by Ultra Performance Liquid Chromatography and Time-of-Flight mass spectrometry (UPLC-TOF-MS). This method was specifically designed to fulfill the requirements of a long-term metabolomic study, spanning more than 3 years, and it was subsequently thoroughly evaluated for robustness and repeatability. We describe here the observed drift in instrumental performance over time and its improvement with adjustment of the length of analytical block. The optimal setup for our purpose was further validated against a set of serum samples from 30 healthy individuals. We also assessed the reproducibility of chromatographic columns with the same chemistry of stationary phase from the same manufacturer but from different production batches. The results have allowed the authors to prepare SOPs for "fit for purpose" long-term UPLC-MS metabolomic studies, such as are being employed in the HUSERMET project. This method allows the acquisition of data and subsequent comparison of data collected across many months or years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.