The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Gait recognition algorithms often perform poorly because of low resolution video sequences, subjective human motion and challenging outdoor scenarios. Despite these challenges, gait recognition research is gaining momentum due to increasing demand and more possibilities for deployment by the surveillance industry. Therefore every research contribution which significantly improves this new biometric is a milestone. We propose a probabilistic subgait interpretation model to recognize gaits. A sub-gait is defined by us as part of the silhouette of a moving body. Binary silhouettes of gait video sequences form the basic input of our approach. A novel modular training scheme has been introduced in this research to efficiently learn subtle sub-gait characteristics from the gait domain. For a given gait sequence, we get useful information from the sub-gaits by identifying and exploiting intrinsic relationships using Bayesian networks. Finally, by incorporating efficient inference strategies, robust decisions are made for recognizing gaits. Our results show that the proposed model tackles well the uncertainties imposed by typical covariate factors and shows significant recognition performance.
Crowd dynamics have important applications in evacuation management systems relevant to organizing safer large scale gatherings. For crowd safety, it is very important to study the evolution of potential crowd behaviours by simulating the crowd evacuation process. Planning crowd control tasks by studying the impact of crowd behaviour evolution towards evacuation could mitigate the possibility of crowd disasters. During a typical emergency evacuation scenario, conflict among agents occurs when agents intend to move to the same location as a result of the interaction with their nearest neighbours. The e ect of the agent response towards their neighbourhood is vital in order to understand the e ect of variation of crowd behaviour on the whole environment. In this work, we model crowd motion subject to exit congestion under uncertainty conditions in a continuous space via computer simulations. We model best-response, risk-seeking, risk-averse and risk-neutral behaviours of agents via certain game-theoretic notions. We perform computer simulations with heterogeneous populations in order to study the e ect of the evolution of agent behaviours towards egress flow under threat conditions. Our simulation results show the relation between the local crowd pressure and the number of injured agents. We observe that when the proportion of agents in a population of risk-seeking agents is increased, the average crowd pressure, average local density and the number of injured agents increases. Besides that, based on our simulation results, we can infer that crowd disasters could be prevented if the agent population consists entirely of risk-averse and risk-neutral agents despite circumstances that lead to threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.