Abstract. TiO 2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO 2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO 2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO 2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06 m , 3.33 m , and 5.20 m . The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film's thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.
The aim of this research is to identify the effects of growth temperature on the characteristics of ZnO nanorods synthesized by the hydrothermal method. The Zinc oxide (ZnO) nanorods synthesis was carried out through two steps, consisting of the ZnO seed layer deposition and the ZnO nanorods growth. The ZnO seed layer was prepared by a spin coating method using zinc acetate dehydrate and ethanol on ITO substrate. The following ZnO nanorods growth was performed with the modified hydrothermal method by using hexamethylenetetramine (HMT) as a precursor and zinc nitrate with a molar ratio of 1:1 for 6 hours. A variation of ZnO nanorods growth temperatures of HMT 25 mM and 50 mM was performed in this research. The resulted ZnO nanorods were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to study their structures and morphology. Transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-Vis) were utilized to characterize the optical characteristics of ZnO nanorods. In general, the synthesized ZnO nanorods were found to be oriented on the (100) and (101) planes with diameters ranging from 81 nm until 365 nm and rods lengths up to 5.1 m. The HMT 50 mM concentration showed that the higher the growth temperature, the larger the sizes of diameter and length of the ZnO nanorods. The ZnO nanorods synthesized by using the 50 mM HMT concentration at 80 oC presented the most favorable result since it had a small size, diameter, and crystallite size with a large energy gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.