The advancement of sensing technologies coupled with the rapid progress in big data analysis has ushered in a new era in intelligent transport and smart city applications. In this context, transportation mode detection (TMD) of mobile users is a field that has gained significant traction in recent years. In this paper, we present a deep learning approach for transportation mode detection using multimodal sensor data elicited from user smartphones. The approach is based on long short-term Memory networks and Bayesian optimization of their parameters. We conducted an extensive experimental evaluation of the proposed approach, which attains very high recognition rates, against a multitude of machine learning approaches, including state-of-the-art methods. We also discuss issues regarding feature correlation and the impact of dimensionality reduction.
Aiming to differentiate various transportation modes and detect the means of transport an individual uses, is the focal point of transportation mode detection, one of the problems in the field of intelligent transport which receives the attention of researchers because of its interesting and useful applications. In this paper, we present TMD-BERT, a transformer-based model for transportation mode detection based on sensor data. The proposed transformer-based approach processes the entire sequence of data, understand the importance of each part of the input sequence and assigns weights accordingly, using attention mechanisms, to learn global dependencies in the sequence. The experimental evaluation shows the high performance of the model compared to the state of the art, demonstrating a prediction accuracy of 98.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.