In our previous work we showed the ability to improve the optical system's matrix condition by optical design, thereby improving its robustness to noise. It was shown that by using singular value decomposition, a target point-spread function (PSF) matrix can be defined for an auxiliary optical system, which works parallel to the original system to achieve such an improvement. In this paper, after briefly introducing the all optics implementation of the auxiliary system, we show a method to decompose the target PSF matrix. This is done through a series of shifted responses of auxiliary optics (named trajectories), where a complicated hardware filter is replaced by postprocessing. This process manipulates the pixel confined PSF response of simple auxiliary optics, which in turn creates an auxiliary system with the required PSF matrix. This method is simulated on two space variant systems and reduces their system condition number from 18,598 to 197 and from 87,640 to 5.75, respectively. We perform a study of the latter result and show significant improvement in image restoration performance, in comparison to a system without auxiliary optics and to other previously suggested hybrid solutions. Image restoration results show that in a range of low signal-to-noise ratio values, the trajectories method gives a significant advantage over alternative approaches. A third space invariant study case is explored only briefly, and we present a significant improvement in the matrix condition number from 1.9160e+013 to 34,526.
(Doc. ID 64203) When motion blur is considered, the optics point spread function (PSF) is conventionally assumed to be fixed, and therefore cascading of the motion optical transfer function (OTF) with the optics OTF is allowed. However, in angular motion conditions, the image is distorted by space-variant effects of wavefront aberrations, defocus, and motion blur. The proposed model considers these effects and formulates a combined space-variant PSF obtained from the angle-dependent optics PSF and the motion PSF that acts as a weighting function. Results of comparison of the new angular-motion-dependent PSF and the traditional PSF show significant differences. To simplify the proposed model, an efficient approximation is suggested and evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.