In this paper we investigate the use of deep neural networks (DNNs) for a small footprint text-dependent speaker verification task. At development stage, a DNN is trained to classify speakers at the framelevel. During speaker enrollment, the trained DNN is used to extract speaker specific features from the last hidden layer. The average of these speaker features, or d-vector, is taken as the speaker model. At evaluation stage, a d-vector is extracted for each utterance and compared to the enrolled speaker model to make a verification decision. Experimental results show the DNN based speaker verification system achieves good performance compared to a popular i-vector system on a small footprint text-dependent speaker verification task. In addition, the DNN based system is more robust to additive noise and outperforms the i-vector system at low False Rejection operating points. Finally the combined system outperforms the i-vector system by 14% and 25% relative in equal error rate (EER) for clean and noisy conditions respectively.Index Terms-Deep neural networks, speaker verification.
In this paper we present a data-driven, integrated approach to speaker verification, which maps a test utterance and a few reference utterances directly to a single score for verification and jointly optimizes the system's components using the same evaluation protocol and metric as at test time. Such an approach will result in simple and efficient systems, requiring little domainspecific knowledge and making few model assumptions. We implement the idea by formulating the problem as a single neural network architecture, including the estimation of a speaker model on only a few utterances, and evaluate it on our internal "Ok Google" benchmark for text-dependent speaker verification. The proposed approach appears to be very effective for big data applications like ours that require highly accurate, easy-to-maintain systems with a small footprint.
In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings;(2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.