Graphene is a two-dimensional new allotrope of carbon, which is stimulating great curiosity due to its superior mechanical, electrical, thermal and optical properties. Particularly attractive is the availability of bulk quantities of graphene (G) which can be easily processed by chemical exfoliation, yielding graphene oxide (GO). The resultant oxygenated graphene sheets covered with hydroxyl, epoxy and carboxyl groups offer tremendous opportunities for further functionalization opening plenty of opportunities for the preparation of advanced composite materials. In this work poly(methyl methacrylate) (PMMA) chains have been grafted from the GO surface via atom transfer radical polymerization (ATRP), yielding a nanocomposite which was soluble in chloroform. The surface of the PMMA grafted GO (GPMMA) was characterized by AFM, HRTEM, Raman, FTIR and contact angle. The interest of these novel nanocomposites lies in their potential to be homogenously dispersed in polymeric dense matrices and to promote good interfacial adhesion, of particular relevance in stress transfer to the fillers. PMMA composite films were prepared using different percentages of GPMMA and pristine GO. Mechanical analysis of the resulting films showed that loadings as low as 1% (w/w) of GPMMA are effective reinforcing agents, yielding tougher films than pure PMMA films and even than composite films of PMMA prepared with GO. In fact, addition of 1% (w/w) of GPMMA fillers led to a significant improvement of the elongation at break, yielding a much more ductile and therefore tougher material. Thermal analysis showed an increase of the thermal stability properties of these films providing evidence that strong interfacial interactions between PMMA and GPMMA are achieved. In addition, AFM analysis, in friction force mode, is demonstrated to be an effective tool to analyse the surface filler distribution on polymer matrices.
The manipulation of the interactions between the cationic amine groups from collagen and the anionic carboxylic groups from graphene oxide mediate the synthesis of a self-assembled hydrogel capable of generate suitable 3D cellular microenvironments.
Electron beam lithography (EBL) was used for preparing nanostructured reduced patterns on the GO paper surface, while preserving its mechanical resistance and flexibility. Different EBL parameters, like dose and time of exposure for patterning were tested. SEM analysis showed the consequent increase of contrast of the reduced stripes on the patterned regions due to the increase of electron beam doses. Moreover, surface potential microscopy experiments also exhibited a clear contrast between the patterned and non-patterned regions. Structural analysis of the patterned paper through X-ray diffraction and nanoindentation showed that the interlayer distance between GO sheets decreases after reduction allowing the increase of the Hardness and Young modulus that makes this material able to be manipulated and integrated on different devices. Furthermore, we also observe that exposed areas to electron beam reduction process show an increase in the electrical conductivity up to 3 × 10 4 times. The developed flexible GO films can have interesting applications such as biosensors or templates for inducing tissue regeneration, by providing a surface with differently patterned cues with contrasting electron mobility. Preliminary in vitro studies with L929 fibroblasts support the cytocompatible nature of this patterned GO paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.