Correlated information from different genetic sources is absent in most of annual self-pollinated crops using the recurrent selection strategy, which is a breeding strategy that improves crop traits consistently over years. In common bean (Phaseolus vulgaris L.) breeding programs, progenies coming from multiple biparental populations are evaluated across generations of inbred plants with the assumption that the data are not correlated. In this paper, in addition to the effects of progeny, we evaluate the effects of populations and generations and provide information for the selection process in a self-pollinated recurrent selection breeding program. Nineteen progenies were extracted from 20 breeding populations and evaluated at different sowing times across F 3:4 and F 3:5 generations. The evaluated traits were plant architecture, angular leaf spot resistance, grain appearance, and grain yield. Progenies were selected using three methods: means of progenies regardless of generation and population effects; the multigeneration index (MI), which considered the generation effect; and the selection index with parents, populations, progenies, and generations (SIPPPG). We showed that adding variation among progenies correctly weighted for different generations as well as variation among populations yield for an increase in genetic gain. Therefore, selection accuracies of the SIPPPG were the highest for all traits compared with those of MI and when generation and population effects were not considered.
Choosing breeding populations in a common bean (Phaseolus vulgaris L.) breeding program via recurrent selection is a crucial step since it maximizes the effort to find superior inbred lines. The application of the mixed models methodology (REML/BLUP) in predicting breeding values has shown good results in animal and perennial crops breeding programs. Conversely, studies on the application of this methodology to annual crops are still scarce. The present work aimed to use the REML/BLUP methodology to select breeding populations of a common bean breeding program via recurrent selection. Thirty-five F 3 populations were evaluated. Individual plants data were assessed for grain yield and hypocotyl diameter, and the genetic potential of the population was estimated via the mixed models and the Jinks and Pooni's methodologies. A selection index was applied to the selection among and within population, considering both characters simultaneously, using the population and individual BLUP means. REML/BLUP has shown to be a feasible methodology to predict and select the potential of breeding populations, considering more than one character. Selecting individual plants within population provides positive genetic gain estimates for both characters. BLUP breeding values are fundamental to the choice of the number of populations and single plants to be conducted in a common bean breeding program via recurrent selection.
O objetivo com este trabalho foi predizer o potencial de populações segregantes do ciclo C 2 do programa de seleção recorrente da Universidade Federal de Viçosa (UFV) visando o melhoramento do porte de feijão carioca, bem como identificar progênies endogâmicas mais promissoras tanto para recombinação como para extração de linhagens. O material genético utilizado neste trabalho constituiu-se de 20 populações F 2 do ciclo C 2 e progênies F 2:3 e F 2:4 derivadas destas populações. Na geração F 2 , as 20 populações foram avaliadas juntamente com cinco testemunhas na safra das águas de 2018, em delineamento de blocos casualizados, com três repetições e parcelas de quatro linhas de quatro metros. Foram avaliados a produtividade de grãos e o diâmetro do hipocótilo (DH) em nível de planta, utilizando uma das linhas centrais da parcela. O potencial de produção das populações foi avaliado com base na metodologia de Jinks e Pooni (1976). As 40 plantas de maior DH, dentro de cada população foram selecionadas e delas derivadas progênies. As 800 progênies F 2:3 e cinco testemunhas foram avaliadas na safra da seca de 2019, utilizando o delineamento de blocos aumentados. Com base nos dados de arquitetura de plantas (ARQ), produtividade (PROD) e aspecto comercial de grãos (AG), foram selecionadas 11 progênies de maior potencial com base no índice da distância genótipo-ideótipo (DGI). Em seguida, na safra das águas de 2019, as 220 progênies F 2:4 selecionadas foram avaliadas no delineamento em látice triplo, quanto aos mesmos caracteres avaliados em F 2:3 . Foram selecionadas 40 progênies para recombinação, sendo as duas melhores progênies de cada população, com base no índice DGI. Também foram selecionadas as 44 progênies melhores classificadas, independente da população de origem, para extração de linhagens. Seis populações se destacaram, com maior probabilidade de gerar linhagens superiores, segundo a metodologia de Jinks e Pooni. O índice de seleção DGI mostrou-se promissor no processo seletivo. As progênies 169, 130, 93 e 91 se destacaram para a extração de linhagens superiores. Já para a recombinação, os ganhos preditos com as progênies selecionadas foram equilibrados e de grande magnitude para os três caracteres, portanto promissoras para dar continuidade ao programa de seleção recorrente. Palavras-chave: Melhoramento do feijoeiro. Seleção recorrente. Índice genótipo-ideótipo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.