This work presents the experimental study of hybrid cement-based composites with polyvinyl alcohol fiber (PVA) and alkali-treated, short, natural curaua fiber. The objective of this research is to develop composites reinforced with PVA and curaua fiber to present strain-hardening behavior with average crack width control. To achieve this objective, three groups of composites were investigated. The first group had only PVA fiber in volumes of 0.5, 1, and 2%. The composite with 2% PVA fiber was the only one with strain-hardening and crack width control. The second group had 0.5% PVA fiber and volume fractions of 2, 2.5, and 3% curaua fiber, and presented only deflection-hardening behavior. The third group had 1% PVA and volumes of 1, 1.5, and 2% curaua fiber, and presented strain-hardening behavior. Based on the results, the hybrid combination of 1% PVA and 1.5% curaua was the optimal mixture as it presented strain-hardening behavior and crack width control, with a lower volume of synthetic PVA fiber. Additionally, compressive strength and mix workability were calculated for the investigated composites for comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.