Due to their exceptional electrical properties, carbon nanotubes (CNTs) can be applied as conductive fillers to develop self-sensing cement-based matrices. In order to obtain an adequate self-sensing response, CNTs must be evenly dispersed through the cement matrix in a volume sufficient enough to create an electric percolation network. This is challenged by the difficulty of dispersing CNTs; therefore, there is a demand for an efficient dispersing agent that can be filled by superplasticiezers, which are products of known compatibility with cement and high availability. This research explores the use of four commercial superplasticizers available in Brazil, both naphthalene and ether polycarboxylate-based, as dispersing agents for CNTs in water. Ultrasonic energy was applied to aqueous solutions containing CNTs and superplasticizers. UV–Vis spectroscopy and ξ-potential measurements were used to investigate which superplasticizer was more effective to disperse the CNTs. Cement pastes were produced with the CNT dispersions and their electrical resistivity was measured. It was found that only superplasticizers without aliphatic groups in their structure were capable of dispersing CNTs in water. It was concluded that second-generation naphthalene-based superplasticizers were more efficient dispersing agents for CNTs than third-generation ether polycarboxylate-based ones for self-sensing applications.
This work presents the experimental study of hybrid cement-based composites with polyvinyl alcohol fiber (PVA) and alkali-treated, short, natural curaua fiber. The objective of this research is to develop composites reinforced with PVA and curaua fiber to present strain-hardening behavior with average crack width control. To achieve this objective, three groups of composites were investigated. The first group had only PVA fiber in volumes of 0.5, 1, and 2%. The composite with 2% PVA fiber was the only one with strain-hardening and crack width control. The second group had 0.5% PVA fiber and volume fractions of 2, 2.5, and 3% curaua fiber, and presented only deflection-hardening behavior. The third group had 1% PVA and volumes of 1, 1.5, and 2% curaua fiber, and presented strain-hardening behavior. Based on the results, the hybrid combination of 1% PVA and 1.5% curaua was the optimal mixture as it presented strain-hardening behavior and crack width control, with a lower volume of synthetic PVA fiber. Additionally, compressive strength and mix workability were calculated for the investigated composites for comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.