The modern “energetic‐on‐a‐chip” trend envisages reducing size and cost while increasing safety and maintaining the performance of energetic articles. However, the fabrication of reactive structures at micro‐ and nanoscales remains a challenge due to the spatial limitations of traditional tools and technologies. These mature techniques, such as melt casting or slurry curing, represent the formative approach to design as distinct from the emerging additive manufacturing (3D printing). The present review discusses various methods of additive manufacturing based on their governing principles, robustness, sample throughput, feasible compositions and available geometries. For chemical composition, nanothermites are among the most promising systems due to their high ignition fidelity and energetic performance. Applications of reactive microstructures are highlighted, including initiators, thrusters, gun propellants, caseless ammunition, joining and biocidal agents. A better understanding of the combustion and detonation phenomena at the micro‐ and nanoscale along with the advancement of deposition technologies will bring further developments in this field, particularly for the design of micro/nanoelectromechanical systems (MEMS/NEMS) and propellant grains with improved performance.
Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML’s NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.
Xenon spectra involving emission from ion species of Xe7+ to Xe12+ were analyzed for a plasma focus discharge developed for extreme ultraviolet lithography. Low and higher resolution spectra were recorded in the 8–21 nm wavelength region for different operating conditions and different He–Xe gas mixtures. The spectra have been compared with Hartree–Fock calculations. The modeling included the distribution of the various xenon ion levels at a given electron equilibrium temperature and plasma opacity effects. Spectral analysis showed that the 4d–5p transition arrays are fairly well separated in wavelength for the ions Xe8+ to Xe11+. Good agreement between experiment and calculations was obtained for line positions and intensities, in particular, for the wavelength region at around 13.5 nm.
Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.