In this paper, we present Latent Drichlet Allocation in automatic text summarization to improve accuracy in document clustering. The experiments involving 398 data set from public blog article obtained by using python scrapy crawler and scraper. Several steps of clustering in this research are preprocessing, automatic document compression using feature method, automatic document compression using LDA, word weighting and clustering algorithm The results show that automatic document summarization with LDA reaches 72% in LDA 40%, compared to traditional k-means method which only reaches 66%.
Telekomunikasi adalah salah satu industri, di mana pelanggan memerlukan perhatian khusus, oleh karena itu, manajemen di sebuah perusahaan telekomunikasi ingin kehilangan pelanggan model prediksi untuk efisien memprediksi berpotensi kehilangan pelanggan. Jaringan syaraf adalah metode yang sering digunakan untuk memprediksi. Teknik yang paling populer dalam metode adalah saraf algoritma jaringan backpropagation. Namun algoritma backpropagation memiliki kelemahan pada kebutuhan untuk data pelatihan besar dan optimasi yang digunakan kurang efisien. Particle Swarm Optimization (PSO) adalah suatu algoritma optimasi yang dapat memecahkan yang efektif masalah pada algoritma neural network umumnya menggunakan algoritma backpropagation. Pengujian model dengan berbasis menggunakan Backpropagation Particle Swarm Optimization menggunakan data pelanggan hilang pada telekomunikasi. Model yang dihasilkan diuji untuk memperoleh akurasi dan nilai-nilai AUC dari masingmasing algoritma untuk mendapatkan tes menggunakan nilai yang diperoleh akurasi Backpropagation adalah 85.48% dan nilai AUC adalah 0.531. Sementara pengujian dengan menggunakan Backpropagation berbasis Particle Swarm Optimization dipilih atribut dan penyesuaian nilai parameter yang diperoleh 86.05% akurasi dan nilai AUC adalah 0,637. Dengan demikian dapat disimpulkan bahwa data pelanggan uji hilang dalam telekomunikasi menggunakan aplikasi Particle Swarm Optimization Backpropagation dan dalam pemilihan atribut diperoleh bahwa metode ini lebih akurat dalam prediksi pelanggan hilang telekomunikasi dibandingkan dengan Backpropagation, ditandai dengan peningkatan akurasi 00:57% dan nilai-nilai AUC dari 0.106, dengan nilai yang dimasukkan ke dalam akurasi klasifikasi cukup.
Lelang Ikan mobile application is an online auction in the marketplace platform of Pasar Iwak based on Android platform. Scrum framework is applied and consists of determining the product backlog, creating sprint planning and sprint backlogs, and conducting sprint reviews and sprint retrospectives. The product backlog resulted 14 backlog items based on the results of system and user requirements for user auctioneers. Sprint planning and sprint backlog are divided into four sprints, namely front-end and back-end development, system integration process and system implementation. Sprint reviews are carried out by implementing two types of testing, namely blackbox testing and user acceptance testing (UAT). Blackbox testing emphasizes testing application functions or features, while UAT is applied to measure the level of user acceptance. The results of blackbox testing showed that the features provided by the application are in accordance with the predetermined requirements. Whereas UAT showed the result of 66.8%, which means that the application is in the appropriate category and can be accepted by users. The application development process ends at the sprint retrospective stage which is a suggestion or feedback after the application testing. The suggestions obtained are in the form of adding tracking features, payment features with payment gateways, and application development with the iOS platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.