Emission of greenhouse gases and scarcity of fossil fuels have put the focus of the scientific community, industry and society on the electric vehicle (EV). In order to reduce CO 2 emissions, cuttingedge policies and regulations are being imposed worldwide, where the use of EVs is being encouraged. In the best of scenarios reaching 245 million EVs by 2030 is expected. Extensive use of EV-s requires the installation of a wide grid of charging stations and it is very important to stablish the best charging power topology in terms of efficiency and impact in the grid. This paper presents a review of the most relevant issues in EV charging station power topologies. This review includes the impact of the battery technology, currently existing standards and proposals for power converters in the charging stations. In this review process, some disadvantages of current chargers have been identified, such as poor efficiency and power factor. To solve these limitations, five unidirectional three-phase rectifier topologies have been proposed for fast EV charging stations that enhance the current situation of chargers. Simulation results show that all the proposed topologies improve the power factor issue without penalizing efficiency. The topologies with the best overall performance are the Vienna 6-switch and the Vienna T-type rectifier. These two converters achieve high efficiency and power factor, and they allow a better distribution of losses among semiconductors, which significantly increase the life-cycle of the semiconductor devices and the reliability of the converter.
Summary In the automotive industry, the design and implementation of power converters and especially inverters, are at a turning point. Silicon (Si) IGBTs are at present the most widely used power semiconductors in most commercial vehicles. However, this trend is beginning to change with the appearance of wide‐bandgap (WBG) devices, particularly silicon carbide (SiC) and gallium nitride (GaN). It is therefore advisable to review their main features and advantages, to update the degree of their market penetration, and to identify the most commonly used alternatives in automotive inverters. In this paper, the aim is therefore to summarize the most relevant characteristics of power inverters, reviewing and providing a global overview of the most outstanding aspects (packages, semiconductor internal structure, stack‐ups, thermal considerations, etc.) of Si, SiC, and GaN power semiconductor technologies, and the degree of their use in electric vehicle powertrains. In addition, the paper also points out the trends that semiconductor technology and next‐generation inverters will be likely to follow, especially when future prospects point to the use of “800 V" battery systems and increased switching frequencies. The internal structure and the characteristics of the power modules are disaggregated, highlighting their thermal and electrical characteristics. In addition, aspects relating to reliability are considered, at both the discrete device and power module level, as well as more general issues that involve the entire propulsion system, such as common‐mode voltage.
Wide Bandgap (WBG) transistors provide better switching performance and higher operating temperatures compared to state of the art Si devices and are suited for high frequency applications due to very short switching times. The main obstacle for implementation of WBG transistors at full potential is the high frequency oscillation in voltage and current during switching transients. Oscillations arise from resonance due to parasitic and device inductances and capacitances. Introduction of WBG transistors depends on the elimination of these oscillations and their negative effect on the performance of power converters. Good layout practice is mandatory, but there is a limit to the reduction of these parasitics and, often, slowing of the semiconductor switching time must be applied. This paper presents a simple methodology for the attenuation of the negative effects of WBG transistor high frequency oscillations without increasing rise and fall times. The proposed methodology is based on determination of the source of feedback resonant frequency between gate and power loops using network analyzer measurement on PCB and utilization of tuned RLC filter. Experimental application of the methodology shows direct relationship between loop resonant frequency and voltage and current oscillations. The proposed method reduces power losses, high frequency oscillations and EMI.
One of the most common issues in inverters are open-circuit faults (OPF). In this scenario, a proper fault-tolerant technique must be used to improve the motor performance. Although basic fault-tolerant modulation techniques are normally preferred, this paper proposes a discontinuous pulse-width modulation algorithm (HD-PWM) to operate five-phase inverters under a single OPF. In particular, loss equalization between the remaining switches after a fault occurs is the main objective of the HD-PWM algorithm, thus preventing future faults from occurring. The efficiency and harmonic distortion of the proposed technique are compared to the well-known sinusoidal PWM by simulation and experimentation under OPF conditions. The results obtained show a great performance of the proposed modulation technique, obtaining a relevant efficiency improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.