Extracellular vesicles (EVs) including exosomes have been shown to play crucial roles in cell-to-cell communication because of their ability to carry biofunctional molecules (e.g., microRNAs and enzymes). EVs also have pharmaceutical advantages and are highly anticipated to be a next-generation intracellular delivery tool. Here, we demonstrate an experimental technique that uses arginine-rich cell-penetrating peptide (CPP)-modified EVs to induce active macropinocytosis for effective cellular EV uptake. Modification of arginine-rich CPPs on the EV membrane resulted in the activation of the macropinocytosis pathway, and the number of arginine residues in the peptide sequences affected the cellular EV uptake efficiency. Consequently, the ribosome-inactivating protein saporin-encapsulated EVs modified with hexadeca-arginine (R16) peptide effectively attained anti-cancer activity.
Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.
RamR is a transcriptional repressor of the gene-encoding RamA protein, which controls the expression of the multidrug efflux system genes acrAB-tolC. RamR is an important multidrug-resistance factor, however, its structure and the identity of the molecules to which it responds have been unknown. Here, we report the crystal structure of RamR in complex with multiple drugs, including berberine, crystal violet, dequalinium, ethidium bromide and rhodamine 6G. All compounds are found to interact with Phe155 of RamR, and each compound is surrounded by different amino acid residues. Binding of these compounds to RamR reduces its DNA-binding affinity, which results in the increased expression of ramA. Our results reveal significant flexibility in the substrate-recognition region of RamR, which regulates the bacterial efflux participating in multidrug resistance.
When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms.
Ciguatoxins are the major causative toxins of ciguatera seafood poisoning. Limited availability of ciguatoxins has hampered the development of a reliable and specific immunoassay for detecting these toxins in contaminated fish. Monoclonal antibodies (mAbs) specific against both ends of ciguatoxin CTX3C were prepared by immunization of mice with protein conjugates of rationally designed synthetic haptens, 3 and 4, in place of the natural toxin. Haptenic groups that possess a surface area larger than 400 A(2) were required to produce mAbs that can bind strongly to CTX3C itself. A direct sandwich enzyme-linked immunosorbent assay (ELISA) using these mAbs was established to detect CTX3C at the ppb level with no cross-reactivity against other related marine toxins, including brevetoxin A, brevetoxin B, okadaic acid, or maitotoxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.