In this paper we evaluate the local seismic response for thirteen sites located in the municipalities of Arquata del Tronto and Montegallo, two areas which suffered heavy damage during the Mw 6.0 and Mw 5.4 earthquakes which struck Central Italy on August 24, 2016. The input dataset is made by ground motion recordings of 348 events occurred during the sequence. The spectral site response is estimated by the Generalized Inversion Technique and makes use of reference sites. The interpretation is further improved through the information provided by a reference-site independent method (i.e., the so called Receiver-Function Technique) and by the Horizontal-to-Vertical Spectral Ratios of ambient noise recordings. We also provide an independent estimate of the local amplification by comparing the Peak Ground Velocity and the Spectral Amplitudes observed at each site to the value estimated by well-established Ground Motion Prediction Equations for a rock-class site. The results obtained by the adopted methodologies are all highly consistent, and they emphasize the different seismic behavior of several sites at local scale. Thus, sites located on Quaternary deposits overlying the bedrock, such as Castro, Pretare, Spelonga, Pescara del Tronto, and Capodacqua feature some relevant amplifications in a medium (2-10 Hz) frequency range; two sites at Spelonga show amplifications also at low frequencies; three sites located on stiff formations, i.e. Uscerno, Balzo and Colle d'Arquata, respectively, feature either nearly neutral response or low amplification level. A probable topographic effect was identified at the rock site of Rocca di Arquata (MZ80).
Seismic attenuation and the associated quality factor (Q) have long been studied in various sub-disciplines of seismology, ranging from observational and engineering seismology to near-surface geophysics and soil/rock dynamics with particular emphasis on geotechnical earthquake engineering and engineering seismology. Within the broader framework of seismic site characterization, various experimental techniques have been adopted over the years to measure the near-surface shear-wave quality factor (QS). Common methods include active- and passive-source recording techniques performed at the free surface of soil deposits and within boreholes, as well as laboratory tests. This paper intends to provide an in-depth review of what Q is and, in particular, how QS is estimated in the current practice. After motivating the importance of this parameter in seismology, we proceed by recalling various theoretical definitions of Q and its measurement through laboratory tests, considering various deformation modes, most notably QP and QS. We next provide a review of the literature on QS estimation methods that use data from surface and borehole sensor recordings. We distinguish between active- and passive-source approaches, along with their pros and cons, as well as the state-of-the-practice and state-of-the-art. Finally, we summarize the phenomena associated with the high-frequency shear-wave attenuation factor (kappa) and its relation to Q, as well as other lesser-known attenuation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.