BACKGROUND & AIMS
Patients with eosinophilic esophagitis (EoE) often become dysphagic from the combination of organ fibrosis and motor abnormalities. We investigated mechanisms of dysphagia, assessing the response of human esophageal fibroblasts (HEF), muscle cells (HEMC), and esophageal muscle strips to eosinophil-derived products.
METHODS
Biopsies were collected via endoscopy from the upper, middle and lower thirds of the esophagus of 18 patients with EoE and 21 individuals undergoing endoscopy for other reasons (controls). Primary cultures of esophageal fibroblasts and muscle cells were derived from 12 freshly resected human esophagectomy specimens. Eosinophil distribution was investigated by histologic analyses of full-thickness esophageal tissue. Active secretion of EoE-related mediators was assessed from medium underlying mucosal biopsy cultures. We quantified production of fibronectin and collagen I by HEF and HEMC in response to eosinophil products. We also measured expression of ICAM1 and VCAM1 by, and adhesion of human eosinophils to, HEF and HEMC. Eosinophil products were tested in an esophageal muscle contraction assay.
RESULTS
Activated eosinophils were present in all esophageal layers. Significantly higher concentrations of eosinophil-related mediators were spontaneously secreted in mucosal biopsies from patients with EoE than controls. Exposure of HEF and HEMC to increasing concentrations of eosinophil products or co-culture with eosinophils caused HEF and HEMC to increase secretion of fibronectin and collagen I; this was inhibited by blocking transforming growth factor (TGF)β1 and p38 mitogen-activated protein kinase (MAKP) signaling. Eosinophil binding to HEF and HEMC increased following incubation of mesenchymal cells with eosinophil-derived products, and decreased following blockade of TGFβ1 and p38MAPK blockade. Eosinophil products reduced electrical field-induced contraction of esophageal muscle strips, but not acetylcholine-induced contraction.
CONCLUSION
In an analysis of tissues samples from patients with EoE, we linked the presence and activation state of eosinophils in EoE with altered fibrogenesis and motility of esophageal fibroblasts and muscle cells. This process might contribute to the development of dysphagia.
Eosinophilic esophagitis is an increasingly recognized cause of a variety of esophageal symptoms, including dysphagia, food impaction, atypical chest pain, and heartburn that does not respond to medical therapy. Its cause is unknown, but allergic and immune-mediated mechanisms similar to those of asthma and other atopic diseases are implicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.