Abstract. Lake Karakul, located in the eastern Pamir Mountains, Tajikistan, is today dominated by the Westerlies. It is a matter of debate whether the Indian Monsoon influenced the region in the past. We analysed an 11.25 m sediment core covering the last 29,000 years to assess and separate lake-internal and lake-external processes, and to infer changes in the predominant atmospheric circulation. Among the parameters indicating lake-external processes, high values in grain-size end-member (EM) 3 (wide grain-size distribution, marking fluvial input) and Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes, implying increased physical weathering) are interpreted as a strong monsoonal impact. High values in EM1, EM2 (peaking at small grain sizes reflecting Westerlies-derived dust) and TiO2 (terrigenous input) are assumed to reflect a strong influence of Westerlies. High input of far-transported dust from the pre-Last Glacial Maximum (LGM) to the late glacial reflects the Westerlies influence, while peaks in fluvial input suggest monsoonal influence. The early to early-mid Holocene is characterised by coarse mean grain sizes, increased physical weathering and constantly high fluvial input indicating a strengthened Indian Monsoon that reached further north into the Karakul region. A steady increase in terrigenous dust, decrease in fluvial input and physical weathering from 6.7 cal kyr BP onwards signals that Westerlies became the predominant atmospheric circulation and brought an arid climate to the region. Proxies for productivity (TOC, C/N, TOCBr), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC) indicate lake-internal changes. Low productivity characterised the lake from the late Pleistocene until 6.7 cal kyr BP and rapidly increased afterwards. The lake level remained low until the LGM, but water depth increased during the late glacial, reaching a high-stand during the early Holocene. Subsequently, the water level decreased until its present state. Today the lake system is mainly climatically controlled but the depositional regime is also driven by lake-internal limnogeological processes.
To elucidate the dynamics of terrestrial leaf waxes in a high-altitude lake system, we performed compound-specific radiocarbon analysis (CSRA) of long-chain n-alkanes in two sediment core sections from Lake Karakul (Pamirs, Tajikistan) and in surface soil samples from the catchment area. We aimed to answer the question whether the n-alkanes are delivered into the lake sediment with substantial delay due to storage in soils, which may cause a potential bias when used as paleoenvironmental proxies. In the surface soils, the CSRA results reveal an age range of n-alkanes from modern to 2278 ± 155 cal BP. In the two sediment core samples, three of the four n-alkane ages fell on the lower ends of the 1σ-uncertainty ranges of modeled ages of the sediments (based on AMS 14C-TOC and OSL dating results). We conclude that sedimentary leaf waxes represent compounds with intermediate turnover time in soils, for example originating from alluvial plains close to the shores. Overall, the results provide evidence that sedimentary leaf wax compounds in this cold and arid setting are potentially older than the conventional age model indicates, but these findings need to be interpreted in context of the generally large uncertainty ranges of such age models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.