Developing automated methods to efficiently process large volumes of point cloud data remains a challenge for threedimensional (3D) plant phenotyping applications. Here, we describe the development of machine learning methods to tackle three primary challenges in plant phenotyping: lamina/stem classification, lamina counting, and stem skeletonization. For classification, we assessed and validated the accuracy of our methods on a dataset of 54 3D shoot architectures, representing multiple growth conditions and developmental time points for two Solanaceous species, tomato (Solanum lycopersicum cv 75 m82D) and Nicotiana benthamiana. Using deep learning, we classified lamina versus stems with 97.8% accuracy. Critically, we also demonstrated the robustness of our method to growth conditions and species that have not been trained on, which is important in practical applications but is often untested. For lamina counting, we developed an enhanced region-growing algorithm to reduce oversegmentation; this method achieved 86.6% accuracy, outperforming prior methods developed for this problem. Finally, for stem skeletonization, we developed an enhanced tip detection technique, which ran an order of magnitude faster and generated more precise skeleton architectures than prior methods. Overall, our improvements enable higher throughput and accurate extraction of phenotypic properties from 3D point cloud data. Emerging technologies for high-throughput plant architecture capture has increased the demand for automated phenotyping methods (Furbank and Tester, 2011; Fiorani and Schurr, 2013). Extracting plant features is a first step toward quantifying biomass and yield (
Motivation Developing methods to efficiently analyze 3D point cloud data of plant architectures remain challenging for many phenotyping applications. Here, we describe a tool that tackles four core phenotyping tasks: classification of cloud points into stem and lamina points, graph skeletonization of the stem points, segmentation of individual lamina and whole leaf labeling. These four tasks are critical for numerous downstream phenotyping goals, such as quantifying plant biomass, performing morphological analyses of plant shapes and uncovering genotype to phenotype relationships. The Plant 3D tool provides an intuitive graphical user interface, a fast 3D rendering engine for visualizing plants with millions of cloud points, and several graph-theoretic and machine-learning algorithms for 3D architecture analyses. Availability and implementation P3D is open-source and implemented in C++. Source code and Windows installer are freely available at https://github.com/iziamtso/P3D/. Contact iziamtso@ucsd.edu or navlakha@cshl.edu Supplementary information Supplementary data are available at Bioinformatics online.
Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato and tobacco plants, grown in five environments and across multiple developmental timepoints. Compared to existing methods for 3D skeletonization, our method efficiently and more accurately estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes containing networks of complex cylindrical shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.