We present a novel approach for style retargeting to non-humanoid characters by allowing extracted stylistic features from one character to be added to the motion of another character with a different body morphology. We introduce the concept of groups of body parts (GBPs), for example, the torso, legs and tail, and we argue that they can be used to capture the individual style of a character motion. By separating GBPs from a character, the user can define mappings between characters with different morphologies. We automatically extract the motion of each GBP from the source, map it to the target and then use a constrained optimization to adjust all joints in each GBP in the target to preserve the original motion while expressing the style of the source.
We show results on characters that present different morphologies to the source motion from which the style is extracted. The style transfer is intuitive and provides a high level of control. For most of the examples in this paper, the definition of GBP takes around 5 min and the optimization about 7 min on average. For the most complicated examples, the definition of three GBPsand their mapping takes about 10 min and the optimization another 30 min.
The fovea is one of the most studied retinal specializations in vertebrates, which consists of an invagination of the retinal tissue with high packing of cone photoreceptors, leading to high visual resolution. Between species, foveae differ morphologically in the depth and width of the foveal pit and the steepness of the foveal walls, which could influence visual perception. However, there is no standardized methodology to measure the contour of the foveal pit across species. We present here FOVEA, a program for the quantification of foveal parameters (width, depth, slope of foveal pit) using images from histological cross-sections or optical coherence tomography (OCT). FOVEA is based on a new algorithm to detect the inner retina contour based on the color variation of the image. We evaluated FOVEA by comparing the fovea morphology of two Passerine birds based on histological cross-sections and its performance with data from previously published OCT images. FOVEA detected differences between species and its output was not significantly different from previous estimates using OCT software. FOVEA can be used for comparative studies to better understand the evolution of the fovea morphology in vertebrates as well as for diagnostic purposes in veterinary pathology. FOVEA is freely available for academic use and can be downloaded at: .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.