Purpose
The purpose of this paper is to provide an effective solution method for the truck and trailer routing problem (TTRP) which is one of the important NP-hard combinatorial optimization problems owing to its multiple real-world applications. It is a generalization of the famous vehicle routing problem (VRP), involving a group of geographically scattered customers served by the vehicle fleet including trucks and trailers.
Design/methodology/approach
The meta-heuristic solution approach based on bat algorithm (BA) in which a local search procedure performed by five different neighborhood structures is developed. Moreover, a self-adaptive (SA) tuning strategy to preserve the swarm diversity is implemented. The effectiveness of the proposed SA-BA is investigated by an experiment conducted on 21 benchmark problems that are well known in the literature.
Findings
Computational results indicate that the proposed SA-BA algorithm is computationally efficient through comparison with other existing algorithms found from the literature according to solution quality. As for the actual computational time, the SA-BA algorithm outperforms others. However, the scaled computational time of the SA-BA algorithm underperforms the other algorithms.
Originality/value
In this work the authors show that the proposed SA-BA is effective as a method for the TTRP problem. To the authors’ knowledge, the BA has not been applied previously, as in this work, to solve the TTRP problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.