Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing Bacillus subtilis and auxin-producing Pseudomonas mandelii strains. Plant growth, deposition of lignin and suberin and concentrations of sodium, potassium, phosphorus and hormones were studied in the plants exposed to salinity. Accumulation of sodium inhibited plant growth accompanied by a decline in potassium in roots and phosphorus in shoots of the salt-stressed plants. Inoculation with both bacterial strains resulted in faster appearance of Casparian bands in root endodermis and an increased growth of salt-stressed plants. B. subtilis prevented the decline in both potassium and phosphorus concentrations and increased concentration of cytokinins in salt-stressed plants. P. mandelii decreased the level of sodium accumulation and increased the concentration of auxin. Growth promotion was greater in plants inoculated with B. subtilis. Increased ion homeostasis may be related to the capacity of bacteria to accelerate the formation of Casparian bands preventing uncontrolled diffusion of solutes through the apoplast. We discuss the relative impacts of the decline in Na accumulation and maintenance of K and P content for growth improvement of salt-stressed plants and their possible relation to the changes in hormone concentration in plants.
Pseudomonas mandelii strain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants. The calculation of hydraulic conductance by relating transpiration to leaf water potential showed that it did not decrease in bacteria-treated plants. We hypothesized that reduced apoplastic conductivity could be compensated by the higher conductivity of the water pathway across the membranes. This assumption was confirmed by the results of the immunolocalization of HvPIP2;5 aquaporins with specific antibodies, showing their increased abundance around the areas of the endodermis and exodermis of bacteria-treated plants. The immunolocalization with antibodies against auxins and abscisic acid revealed elevated levels of these hormones in the roots of plants treated with bacteria. This root accumulation of hormones is likely to be associated with the ability of Pseudomonas mandelii IB-Ki14 to synthesize these hormones. The involvement of abscisic acid in the control of aquaporin abundance and auxins—in the regulation of and formation of apoplast barriers—is discussed.
Cytokinins are known to keep stomata open, which supports gas exchange and correlates with increased photosynthesis. However, keeping the stomata open can be detrimental if the increased transpiration is not compensated for by water supply to the shoots. In this study, we traced the effect of ipt (isopentenyl transferase) gene induction, which increases the concentration of cytokinins in transgenic tobacco plants, on transpiration and hydraulic conductivity. Since water flow depends on the conductivity of the apoplast, the deposition of lignin and suberin in the apoplast was studied by staining with berberine. The effect of an increased concentration of cytokinins on the flow of water through aquaporins (AQPs) was revealed by inhibition of AQPs with HgCl2. It was shown that an elevated concentration of cytokinins in ipt-transgenic plants increases hydraulic conductivity by enhancing the activity of aquaporins and reducing the formation of apoplastic barriers. The simultaneous effect of cytokinins on both stomatal and hydraulic conductivity makes it possible to coordinate the evaporation of water from leaves and its flow from roots to leaves, thereby maintaining the water balance and leaf hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.