The COVID-19 pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. Here, we characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting ~10-fold higher expression than its parental construct and the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.
Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe structural dynamics under thermal equilibrium conditions on time scales ranging from femtoseconds to approximately 100 ps and longer. One of the important uses of 2D-IR spectroscopy is to monitor the dynamical evolution of a molecular system by reporting the time dependent frequency fluctuations of an ensemble of vibrational probes. The vibrational frequency-frequency correlation function (FFCF) is the connection between the experimental observables and the microscopic molecular dynamics and is thus the central object of interest in studying dynamics with 2D-IR vibrational echo spectroscopy. A new observable is presented that greatly simplifies the extraction of the FFCF from experimental data. The observable is the inverse of the center line slope (CLS) of the 2D spectrum. The CLS is the inverse of the slope of the line that connects the maxima of the peaks of a series of cuts through the 2D spectrum that are parallel to the frequency axis associated with the first electric field-matter interaction. The CLS varies from a maximum of 1 to 0 as spectral diffusion proceeds. It is shown analytically to second order in time that the CLS is the T(w) (time between pulses 2 and 3) dependent part of the FFCF. The procedure to extract the FFCF from the CLS is described, and it is shown that the T(w) independent homogeneous contribution to the FFCF can also be recovered to yield the full FFCF. The method is demonstrated by extracting FFCFs from families of calculated 2D-IR spectra and the linear absorption spectra produced from known FFCFs. Sources and magnitudes of errors in the procedure are quantified, and it is shown that in most circumstances, they are negligible. It is also demonstrated that the CLS is essentially unaffected by Fourier filtering methods (apodization), which can significantly increase the efficiency of data acquisition and spectral resolution, when the apodization is applied along the axis used for obtaining the CLS and is symmetrical about tau=0. The CLS is also unchanged by finite pulse durations that broaden 2D spectra.
Spectrally resolved infrared stimulated vibrational echo data were obtained for sperm whale carbonmonoxymyoglobin (MbCO) at 300 K. The measured dephasing dynamics of the CO ligand are in agreement with dephasing dynamics calculated with molecular dynamics (MD) simulations for MbCO with the residue histidine-64 (His64) having its imidazole epsilon nitrogen protonated (N(epsilon)-H). The two conformational substate structures B(epsilon) and R(epsilon) observed in the MD simulations are assigned to the spectroscopic A(1) and A(3) conformational substates of MbCO, respectively, based on the agreement between the experimentally measured and calculated dephasing dynamics for these substates. In the A(1) substate, the N(epsilon)-H proton and N(delta) of His64 are approximately equidistant from the CO ligand, while in the A(3) substate, the N(epsilon)-H of His64 is oriented toward the CO, and the N(delta) is on the surface of the protein. The MD simulations show that dynamics of His64 represent the major source of vibrational dephasing of the CO ligand in the A(3) state on both femtosecond and picosecond time scales. Dephasing in the A(1) state is controlled by His64 on femtosecond time scales, and by the rest of the protein and the water solvent on longer time scales.
1The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated 2 efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health 3 emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion 4 protein that is metastable and difficult to produce recombinantly in large quantities. Here, we 5 designed and expressed over 100 structure-guided spike variants based upon a previously 6 determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical 7 and structural characterization of these variants identified numerous individual substitutions that 8 increased protein yields and stability. The best variant, HexaPro, has six beneficial proline 9 substitutions leading to ~10-fold higher expression than its parental construct and is able to 10 withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution 11 cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-12 yield production of a stabilized prefusion spike protein will accelerate the development of 13 vaccines and serological diagnostics for SARS-CoV-2. 14 3 INTRODUCTION 15 Coronaviruses are enveloped viruses containing positive-sense RNA genomes. Four human 16 coronaviruses generally cause mild respiratory illness and circulate annually. However, SARS-17 CoV and MERS-CoV were acquired by humans via zoonotic transmission and caused outbreaks 18 of severe respiratory infections with high case-fatality rates in 2002 and 2012, respectively 1,2 . 19 SARS-CoV-2 is a novel betacoronavirus that emerged in Wuhan, China in December 2019 and 20 is the causative agent of the ongoing COVID-19 pandemic 3,4 . As of May 26, 2020, the WHO has 21 reported over 5 million cases and 350,000 deaths worldwide. Effective vaccines, therapeutic 22 antibodies and small-molecule inhibitors are urgently needed, and the development of these 23 interventions is proceeding rapidly. 24 Coronavirus virions are decorated with a spike (S) glycoprotein that binds to host-cell 25 receptors and mediates cell entry via fusion of the host and viral membranes 5 . S proteins are 26 trimeric class I fusion proteins that are expressed as a single polypeptide that is subsequently 27cleaved into S1 and S2 subunits by cellular proteases 6,7 . The S1 subunit contains the receptor-28 binding domain (RBD), which, in the case of SARS-CoV-2, recognizes the angiotensin-29 converting enzyme 2 (ACE2) receptor on the host-cell surface [8][9][10] . The S2 subunit mediates 30 membrane fusion and contains an additional protease cleavage site, referred to as S2′, that is 31 adjacent to a hydrophobic fusion peptide. Binding of the RBD to ACE2 triggers S1 dissociation, 32 allowing for a large rearrangement of S2 as it transitions from a metastable prefusion 33 conformation to a highly stable postfusion conformation 6,11 . During this rearrangement, the 34 fusion peptide is inserted into the host-cell membrane after cleavage at S2′, and two h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.