Food supplements based on fermented Carica papaya and Morinda citrifolia, known for their immune modulating, redox balancing, and anti-inflammatory effects, were added to conventional treatment protocols prescribed to patients recovering after severe and moderate COVID-19 disease in order to alleviate long-lasting post-COVID symptoms. A randomized single-center placebo-controlled clinical laboratory study was designed and performed (total number of participants 188, with delta variant of virus 157, with omicron 31). Clinical statuses were assessed using computer tomography, electrocardiography, a questionnaire, and physical endurance. Plasma cytokines (IL-6, IL-8, IL-17A, and INF-gamma), nitrate/nitrite ratio, antioxidant activity (AOA), and polymorphonuclear leukocyte (PMN) ATP levels were determined before and 20 days following the addition of 28 g of fermented supplements twice per day. The capacity of PMN to phagocyte and the oral-nasal-pharyngeal microbiota were assessed. Clinical symptoms, IL-6, IL-8, and nitric oxide metabolites diminished significantly compared to the placebo group and their background expression. The PMN capacity to phagocyte, AOA, and ATP content remarkably increased. The oral-nasal-pharyngeal microbiota were unchanged. On these grounds, we suggest that fermented tropical fruits could efficiently diminish post-COVID clinical symptoms through several immune-modulating, redox balancing, and pro-energy mechanisms.
Water depleted of heavy isotopes, such as 2H1 and 18O16 (HIDW), has shown numerous biological/health effects in vitro, in vivo, and in epidemiological studies. Major observations were related to cell growth/differentiation, immune/nervous system responses, endurance/adaptation, mitochondrial electron transfer, energy production, glucose metabolism, etc. No human studies to confirm physiological, metabolic, and immune responses to the consumption of HIDW have been performed. A placebo-controlled study on healthy volunteers (n = 50) under fitness load who consumed 1.5 L HIDW (58 ppm 2H and 1780 ppm 18O) or normal water for 60 days was carried out. Plasma content of 2H1 and 18O16, markers of energy, lipid, and glucose metabolism, anthropometric, cardio-vascular, oxidant/antioxidant, and immunological parameters were determined. Significant decrease in plasma heavy isotopes in the group consuming HIDW was observed in concomitance with an increase in ATP, insulin, and LDH, and diminished plasma lactate. Several anthropometric and cardio-vascular parameters were improved as compared to placebo group. Lipid markers demonstrated antiatherogenic effects, while oxidant/antioxidant parameters revealed HIDW-induced hormesis. Antibacterial/antiviral immunity was remarkably higher in HIDW versus placebo group. Conclusions: HIDW consumption by humans under fitness load could be a valid approach to improve their adaptation/recovery through several mechanisms.
In the observational clinical study, we identified the oxidative markers of HPV-associated cervical carcinogenesis and the local/circulating ligands of TNF-alpha-induced apoptosis. Cervical biopsies of 196 females infected with low-cancer-risk HPV10/13 or high-cancer-risk HPV16/18 (healthy, pre-cancerous CIN I and CIN II, and CIN III carcinoma) were analysed for OH radical scavenging, catalase, GSH-peroxidase, myeloperoxidase (MPO), nitrate/nitrite, nitrotyrosine, and isoprostane. Ligands of TNF-alpha-dependent apoptosis (TNF-alpha, TRAIL, IL-2, and sFAS) were determined in cervical fluid, biopsies, and serum. Cervical MPO was highly enhanced, while nitrotyrosine decreased in CIN III. Local/circulating TRAIL was remarkably decreased, and higher-than-control serum TNF-alpha and IL-2 levels were found in the CIN I and CIN III groups. Then, 250 females infected with HPV16/18 (healthy and with CIN I and CIN II) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Post-trial colposcopy revealed normal patterns in 100% of the FM group versus 62% of the placebo group. Inflammatory cells in cervical fluid were found in 21% of the FM group versus 40% of the placebo group. Locally, FM drastically diminished MPO and NO2/NO3, while it remarkably increased TRAIL. Additionally, FM supplementation normalised serum TRAIL, TNF-alpha, and IL-2.
Plant-derived secondary metabolites (polyphenols/terpenes/alkaloids) and microbial exometabolites/membrane components of fermented tropical fruits are known as highly bioavailable biomolecules causing skin and hair improvement effects (wound healing, anti-inflammatory, antioxidant, antidiabetic, antiacne, skin/hair microbiota balancing, hair growth-promoting, and hair loss-inhibiting). Caffein is considered as a hair growth promoter. A randomized placebo- and caffein-controlled clinical trial on the efficacy of fermented papaya (FP) plus fermented mangosteen (FM) towards human hair quality and loss was conducted. Shampoo and lotion hair care products containing FP, FM, and caffein as active agents were developed and applied to 154 subjects of both sexes with clinically confirmed androgenic or diffuse alopecia for 3 months. Their clinical efficacy was assessed subjectively by questionnaires filled in by dermatologists/trichologists, and by the objective trichomicroscopical calculations. Hair and scalp skin quality was determined by microbiota pattern and ATP, SH-groups, protein, and malonyl dialdehyde quantification. Comparative clinical data showed that the experimental hair care cosmetics significantly inhibited hair loss, increased hair density/thickness, and improved hair follicle structure versus placebo and caffein controls. The cosmetics with FP and FM substantially normalized the microbiota pattern and increased ATP content in hair follicle, while inhibiting lipid peroxidation in the scalp skin, and SH-group formation in the hair shaft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.