By the integration of electro-conductive properties in the fabric structure a flexible textile can be obtained that does not reduce the quality of comfort, maintenance and wearability of clothing. Each type of yarn has its advantages and disadvantages, for example, metal coated polymer multifilament yarn has a lower resistance to heat than metal multifilament yarn, but it is more flexible. During this research conductive knitted patterns were made and tested. For the experiments more suitable yarns for knitting were selected, which had a lower resistance and were visually less changing of the knitted pattern in appearance: silver coated multifilament polyamide, products of two different companies; stainless steel multifilament yarn and polyester/stainless steel spun yarn. The single-faced patterns of non-conductive yarn and straight and figural conductive traces of conductive yarns were knitted. A test was made with the purpose of finding out the electrical resistance of knitted textile affected by force. Knit warm-up potency was researched during temperature measurement tests. Knitting test pieces were also evaluated by aspect of technical structure and visual appearance. Generally, it was concluded that steel yarns could not be used for knitting while silver coated polyamide yarns are suitable for the manufacture of knitted heating elements. As a result of this research, knitwear with a textile heating element was made.
Embroidery technologies are widely applied for developing decorative elements of original design in garments, for integrating threads intended for protection into garments and other articles. Nonconformity of the shape and dimensions of the embroidered element with the designed digital image is influenced by properties of embroidery threads and fibres, by the filling type, density of stitches and other technological parameters. The objective of the paper is to explore the influence made by properties of fabrics and by the direction of stitches of the actual embroidered element on conformity of the shape with one of the designed digital image. For the research, embroidery threads of different purpose as well as three woven fabrics have been selected. For preparation of test samples, round digital images have been designed filling the embroidery area in different stitch directions. Analysis of the results of the investigations has demonstrated that the shape and dimensions of the embroidered element failed to conform to the shape and dimensions of the designed digital image in most cases. In certain cases, e.g. when the stitch direction goes towards the middle of the embroidered element, a defect, i. e. hole, is observed due to considerable concentration of stitches in the centre of the element.
This work deals with the electrically conductive textiles for heat generation in orthopedic compression supports. This study aimed to develop compression knitted structures with integrated electro-conductive yarns and investigate their heat generation characteristics and temperature changes during the time and under stretch which is required to generate compression. Combined half-Milano rib structured knitted fabrics were made by using silver (Ag) coated PA yarn of linear density of 66 tex and 235 tex, respectively. Six variants of specimens were developed by using different amount of electro-conductive yarns in a pattern repeat. It was found that stretch negatively influences temperature values as well as time in which the required temperature is reached. Therefore, the final wearing conditions have to be summed up during the designing of compression orthopedic heated supports.
The conductive yarn is an essential component of the smart textile making the product light and comfortable to wear. Nevertheless, one of the most common problems is care that limits the use of the product. Application of additional coating to the yarn renders it water-repellent properties and allows reduction of the negative impact of water on its performance. During the research additional coatings were applied to conductive yarns, with the aim of minimizing electrical resistivity changes caused by washing cycles. Two types of coatings were applied to the yarns, they were washed and tested. The article describes changes in the electrical resistance of different conductors depending on the linear density of the yarn, the type of coating applied and the number of washing cycles. The electrical resistance of electrically conductive yarns increases with washing until they become non-conductive. The electrical resistance of non-textured yarns increases more slowly and the smaller increase is observed in thick yarns. The water-repellent silicone coating applied to yarns reduces the electrical resistance increase rate and the yarns retain their conductivity over more washing cycles.
Novel biobased materials from fungal hyphae and cellulose fibers have been proposed to address the increasing demand for natural materials in personal protective equipment (PPE). Materials containing commercially available kraft fibers (KF), laboratory-made highly fibrillated hemp fibers (HF) and fungal fibers (FF) obtained from fruiting bodies of lignicolous basidiomycetes growing in nature were prepared using paper production techniques and evaluated for their mechanical and air permeability properties. SEM and microscopy revealed the network structure of materials. The tensile index of materials was in the range of 8–60 Nm/g and air permeability ranged from 32–23,990 mL/min, depending on the composition of materials. HF was the key component for strength; however, the addition of FF to compositions resulted in higher air permeability. Chemical composition analysis (Fourier-transform infrared spectroscopy) revealed the presence of natural polysaccharides, mainly cellulose and chitin, as well as the appropriate elemental distribution of components C, H and N. Biodegradation potential was proven by a 30-day-long composting in substrate, which resulted in an 8–62% drop in the C/N ratio. Conclusions were drawn about the appropriateness of fungal hyphae for use in papermaking-like technologies together with cellulose fibers. Developed materials can be considered as an alternative to synthetic melt and spun-blown materials for PPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.