A field survey covering the major cereal-production areas of Syria was conducted during May 2009. A total of 938 wheat and 971 barley samples with typical symptoms of viral infection were collected from 45 wheat and 58 barley fields. All collected samples were tested by the tissue-blot immunoassay (1) at the Virology Laboratory of ICARDA, Syria using six specific cereal virus antisera, including polyclonal antibody AS-0216 for Wheat dwarf virus (WDV) provided by the German Collection of Microorganisms and Cell Cultures (DSMZ). Serological tests showed that WDV was detected in 16 wheat (cv. Cham 8) and five barley (cv. Arabic abiad) samples collected from Al-Hasskah governorate (eastern region of Syria) and showing dwarfing, yellowing, and reduced heading. Samples that reacted with WDV antiserum were transmitted from infected plants to healthy plants of oat (Avena sativa L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and some grass species using four different leafhopper species, collected from Syrian wheat and barley fields, in a persistent manner. Leafhopper transmission tests indicated that only Psammotettix provincialis Ribaut was able to transmit Syrian barley WDV isolates (SB 1248-09 and SB 1249-09) from infected barley plants to healthy barley (48 plants became infected of 50 plants inoculated) and oats (45 of 50) under greenhouse conditions. The identity of P. provincialis was confirmed by the British Museum. Total DNA was extracted from six WDV-positive samples (three wheat and three barley) and tested by PCR using WDV primer set (WDV-F: 5′-TTGAGCCAATCTTCGTC-3′; WDV-R: 5′-GGAAAGACTTCCTGGGC-3′) described by Oluwafemi (2). All six Syrian WDV-positive samples generated amplicons around the expected size (~253 bp). The amplicons from one isolate from wheat (SW 2131-09, GenBank Accession No. HQ113095) and one isolate from barley (SB 1248-09, GenBank Accession No. HQ113096) showed they had 86% sequence identity with each other, suggesting that both isolates can be considered to belong to the same species (3). Barley isolate SB 1248-09 had 99% sequence identity to an Iranian isolate of Barley dwarf virus (FJ620684.1) and 92% identity to most European barley-WDV isolates (e.g., Germany [AM942044.1] and Hungary [FM999832.1]), whereas, the wheat isolate (SW 2131-09) had 98 to 100% identity with most European wheat-WDV isolates (e.g., Czech Rep [FJ546191.1] and Germany [AM296023.1]) and a Chinese isolate (EF536868.1). WDV has been reported to infect cereals in few countries in West Asia and North Africa (Turkey, Tunisia, and Morocco) and causes economic losses on wheat in many countries in Europe (e.g., Sweden). WDV has been reported to be transmitted in a persistent manner only by leafhoppers (P. alienus Dahlbom) (4) to a wide range of cereal and wild grasses. Two strains of WDV are known, one that primarily infects wheat and another that infects barley. To our knowledge, this is the first record of WDV (both strains) infecting wheat and barley crops in Syria and the first report of P. provincialis as a WDV vector worldwide. References: (1) K. M. Makkouk and A. Comeau. Eur. J. Plant Pathol. 100:71, 1994. (2) S. Oluwafemi. Afr. J. Biotechnol. 5:590, 2006. (3) J. Stanley et al. Page 301 in: The International Committee on the Taxonomy of Viruses. 8th Report. Elsevier/Academic Press, London, 2005. (4) J. Vacke. Biol. Plant. 3:228, 1961.
SUMMARYSystemic movement of Sonchus yellow net virus to leaves and roots was first detected by ELISA 24 h after mechanical inoculation. Thereafter, virus levels rose to a maximum 10 days after inoculation; the highest levels were between 4-0 and 7.3 Ixg/g tissue, in leaves which were not yet fully expanded. Electron microscopy of tissue sections revealed that when the virus content of tissues was greatest, virtually all leaf and root cells were infected. Most of the virions were in the perinuclear space; only a few were scattered in the cytoplasm. Nuclei contained large viroplasms associated with viral nucleocapsids. Between 10 and 20 days after inoculation, levels of virus antigen and viral RNA fell to about 20~ of their maximum. By 20 days after inoculation, no more than 10~o of cells contained virus particles and almost all the virions were in the Cytoplasm. These results suggest that this virus spreads systemically until most or all cells are infected. The plants then undergo a recovery phase during which virus disappears from the nuclei of infected cells and vesiculates into the cytoplasm.
Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. In spring and autumn 2017, virus-like symptoms were observed on greenhouse grown tomato plants in the east of Akkar plain (south of coastal region, Tartous governorate, Syria). These symptoms were: mild to severe mosaic on the apical leaves, brown necrosis on sepals, receptacle and flower’s cluster carrier, and severe symptoms of brown rugose and discoloration on fruit. During next growing seasons, disease spread was observed in most of Syrian coastal region with disease incidence ranged from 40% to 70% by 2020. Tomato brown rugose fruit virus (ToBRFV) was suspected as a main causal agent of the disease, especially since its first report in Jordan, a neighboring country (Salem et al. 2016), Palestine (Alkowni et al. 2019), Turkey (Fidan et al. 2019), Germany (Menzel et al. 2019), Italy (Panno et al. 2019), America (Camacho-Beltrán et al. 2019), Egypt (Amer and Mahmoud, 2020), and recently in Spain (Alfaro-Fernandez et al. 2021). In November and December 2020, seventy-one leaf samples from symptomatic plants (59 from Tartous and 12 from Lattakia governorates) and seven from asymptomatic ones (5 from Tartous and 2 from Lattakia) were collected and tested for the presence of ToBRFV by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), using ToBRFV-commercial kit (LOEWE® Biochemia, Germany) following the manufacturer’s instructions. Results showed, forty-three of symptomatic samples reacted positively (38 in Tartous and 5 in Lattakia) and none of asymptomatic ones. On the other hand, sap mechanical inoculation of 10 tomato cv. Mandaloun F1 (Enza Zaden, the Netherlands) plants using a positive tomato isolate gave systemic mosaic symptoms in all plants identical to those observed in the original plants in the field, after 13 days of inoculation, and necrotic local lesions on 10 plants of Nicotiana tabacum after 5 days, indicating the presence of a tobamovirus in general. ToBRFV infection was confirmed in all mechanically-inoculated plants by DAS-ELISA. Further tests were necessary to investigate ToBRFV presence, because of its serological relationships with another tobamoviruses. Six representative symptomatic samples (ELISA-positive) and two asymptomatic (ELISA-negative) samples were subjected to total RNA extraction using the SV-Total RNA Extraction kit (Promega, U.S.A.) following the manufacturer’s instructions. The samples were tested by two-step reverse transcription-polymerase chain reaction (RT-PCR) using species-specific primers and protocols for most common tomato-infecting viruses, including: tomato chlorosis virus and tomato infectious chlorosis virus (Dovas et al. 2002), pepino mosaic virus (PepMV) and tomato torrado virus (Wieczorek et al. 2013), alfalfa mosaic virus (Parrella et al. 2000), tomato spotted wilt virus (Salem et al. 2012) and a pair of primers: ToBRFV-F2 (5’-CATATCTCTCGACACCAGTAAAAGGACCCG-3’) and ToBRFV-R2 (5’-TCCGAGTATAGGAAGACTCTGGTTGGTC-3’) targeting a region of the RNA dependent RNA polymerase (RdRp), of the ToBRFV genome (KT383474; Salem et al. 2016). First-strand cDNA synthesis was carried out using Moloney murine leukemia virus reverse transcriptase (M-MLV RT; Promega) and random primer according to the manufacturer's protocol, then followed by PCR with the seven species-specific primers. Only ToBRFV was detected among all tested viruses in symptomatic samples (ELISA-positive), and none of the tested viruses was detected in the asymptomatic plants. To confirm the presence of ToBRFV, two selected RdRp-specific PCR amplicons (872 bp) were purified and ligated into pGEM T-Easy Vector (Promega), and three clones were sequenced (GenBank accession nos. MZ447794 to 96). BLASTn analysis showed that the nucleotide sequences are 99.77-100% identical and shared around 99% identity to RdRp of ToBRFV isolate (MT118666) from Turkey available in the GenBank. Accordingly, the presence of ToBRFV was confirmed by bioassays on indicator plants, DAS-ELISA, RT-PCR, and further sequencing. To our knowledge, this is the first report of ToBRFV infecting tomato in Syria, and this requires special emphasis for further investigations because of the virus severity, easy transmission ability and absent of commercial resistance varieties till now.
SUMMARYNicotiana edwardsonii plants were examined by electron microscopy 5 months after inoculation with Sonchus yellow net virus (SYNV). No virions were observed in leaf or root cells, but cells in sections of calyx tissue contained large numbers of virus particles. Most of these particles were only 73 to 86 ~ as tong as particles of standard SYNV. Nicotiana edwardsonii inoculated with sap extracted from chronically infected calyx became systemically infected but exhibited chlorotic mottling, instead of the normal vein-clearing symptoms. Most virus particles in these plants were short, and when purified, sedimented more slowly than standard SYNV. Purified short particles were not infective, but plants inoculated with a mixture of short and standard particles developed mottling symptoms and yielded predominantly short particles. Proteins from short particles were electrophoretically and antigenically identical to those from standard virus. RNA from short particles was 77~ the size of RNA from standard SYNV and hybridized to cloned SYNV cDNA. These short particles have all the characteristics of defective interfering particles.
This experiment aimed to study the effect of three species of plant growth promoting rhizobacteria (Frateuria aurantia, Bacillus megaterium and Azotobacter chroococcum) inoculated to seeds and shoots of tomato plants on Cucumber mosaic virusdisease severity, salicylic acid and peroxidase activity content and their ability to suppress the effect of CMV in a plastic tunnel in Tartus-Syria. The results showed that, the treatment with single bacteria Frateuria aurantia produced significant reduction in disease severity and higher infree salicylic acid and peroxidase activity contents compared with Bacillus megaterium or Azotobacter chroococcumin CMVinfected or healthy controls. Mixed treatments with three bacterial species gave the highest reduction in disease severity and increasedof free salicylic acid and peroxide activity contained in both CMV-infected and healthy tomato plants. Such increase in free salicylic acid and peroxidase activity contents suggested the potential ability of rhizobacteria to stimulate mechanisms of systemic resistance and reduces the effect of CMV infection on tomato plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.