Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.
Hybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi‐domain III–V/Si are hybrid structures, composed of bulk photo‐active semiconductors with 2D topological semi‐metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first‐principle calculations, it is shown that the bi‐domain III–V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo‐generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection. Besides, the original topological properties of the 2D semi‐metallic inclusions are also discussed. This comb‐like heterostructure not only merges the superior optical properties of semiconductors with good transport properties of metallic materials, but also combines the high efficiency and tunability afforded by III–V inorganic bulk materials with the flexible management of nano‐scale charge carriers usually offered by blends of organic materials. Physical properties of these novel hybrid heterostructures can be of great interest for energy harvesting, photonic, electronic or computing devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.