The objective of our research was to investigate the properties of jack bean tempeh during fermentation with two different packaging types, banana leaves and LDPE (Low-Density Poly Ethylene) Plastic. After 24 hrs mycelia of Rhizopushasnot been formed, but it fully formed after 36 hrs fermentation for all formulated tempeh with two different packaging. The mycelia started the change to form brownish colour after 36 hrs of fermentation. Solid state fermentation (SSF) for 0, 24, 36, 48 and 60 h showed influence in different parameter e.g. total protein, the colour parameter (L, a, b, C, Hue, and ΔE) and pH during fermentation (p<0.05). Optimum condition of tempeh was chosen after 36 hrs fermentation that showed the influence of different packaging type to the lipid content and antioxidant activity (p<0.05), but no significant different to the water content, ash content, protein content, dietary fiber content and carbohydrate by the different content of tempeh (p>0.05). In the present research work, we demonstrated that different fermentation time and packaging will give influence to several physiochemical characteristics including total soluble protein, colour, and pH.
Kalimantan acid sulphate land has the potential to be developed into productive land, with good land optimization. Utilization of rhizosphere microorganism diversity, especially mold can potentially provide a solution in optimizing agricultural land, namely the ability to produce extracellular enzymes. This study aims to determine the potential of mold originating from acid sulphate fields in producing extracellular enzymes (pectinase, chitinase, glucanase, cellulase, and phosphatase). The study was conducted in June-July 2019 at the Microbiology Laboratory, Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development. Screening of extracellular enzyme-producing fungi was carried out on selection media. The results obtained by some isolates have the ability to produce extracellular enzymes. Indications of the ability of mold to produce extracellular enzymes are the presence of clear zones in the selection medium. In pectinase, chitinase and glucanase testing all isolates showed negative results. Potential isolates in producing extracellular enzymes include Penicillium sp. Paddy 4.1 (cellulolytic index 2.43), Clonostachys sp. KRMT 17.9 and Penicillium singorense KLK 13.7 (proteolytic indices 3.97 and 3,00, respectively). The difference in index values indicates the variation in the level of enzyme activity.
Tanaman Pegagan (Centella asiatica) adalah tanaman obat yang dikenal bersimbiosis dengan berbagai jenis jamur endofit. Jamur endofit dipelajari secara ekstensif sebagai sumber senyawa bioaktif baru, termasuk enzim ekstraseluler. Enzim asparaginase, amilase, selulase, pektinase, protease, glukanase, dan lakase digunakan dalam industri. Penelitian ini bertujuan untuk mengkarakterisasi beberapa produksi enzim dari 40 jamur endofit dari C. asiatica. Penelitian dilakukan di Laboratorium Mikrobiologi, Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian Bogor dan Laboratorium Mikrobiologi, PLT UIN Syarif Hidayatullah Jakarta pada bulan Februari hingga April 2019. Skrining enzim asparaginase, amilase, selulase, pektinase, protease, glukanase, dan lakase dilakukan pada medium Potato Dextrose Agar yang diperkaya dengan substrat tertentu. Hasil penelitian menunjukkan bahwa jumlah dan jenis enzim yang dihasilkan oleh jamur bervariasi. Phanerochaete chrysosporium MB02, Fusarium falciforme MB07, Trichaptum sp. MB11, Fusarium keratoplasticum MB12, Penicillium capsulatum MB15, Phoma multirostrata MB16, Fusarium oxysporum MB17, dan Mycochaetophora gentianae MB21 menghasilkan jumlah enzim tertinggi (6 jenis enzim). Berdasarkan enzim yang diproduksi (nilai indeks), Colletotrichum tabaci MB14 menghasilkan asparaginase tertinggi (indeks 2,65), Fusarium keratoplasticum MB12, Colletotrichum tabaci MB14, dan Phoma multirostrata MB16 untuk amilase (indeks 2,00); Peroneutypa scoparia MM10 untuk selulase (indeks 4.10); Colletotrichum karstii MM02 untuk pektinase (indeks 4.12); C. tabaci MB14 untuk protease (indeks 4.37); Acrocalymma vagum MB04 untuk glukanase (indeks 1,68); dan Fusarium solani MM03 untuk lakase (indeks 0,22). Colletotrichum tabaci MB14 merupakan isolat yang unggul penghasil 3 jenis enzim tertinggi (asparaginase, amilase, dan protease). Perlu dilakukan penelitian lebih lanjut untuk menganalisis secara kuantitatif produksi enzim ekstraseluler yang dihasilkan dan prospeknya untuk keperluan industri.
This study aimed to obtain yeast and bacteria from Myristica fragrans Houtt., which have the potential to produce chitinase enzymes with antagonistic ability against Rigidoporus microporous. Both microorganisms were extracted from the leaves and fruit of nutmeg. A total of 35 yeast and 29 bacterial isolates were obtained, with different morphological characters. The chitinolytic test was carried out qualitatively, and the parameters observed include the clear zones around the colony. A total of 4 bacterial isolates produced chitinase enzymes (BP 1.2.1, BP 2.1.1, EPBj II.K1, and EPBj II. K2) with a chitinolytic index of 3.92, 5.38, 2.00, and 1.66, respectively. Yeast isolates were negative for chitinase enzymes. The difference in index value indicated a variation in enzyme activity. The antagonist test was carried out using a dual culture method. A total of 1 yeast and 14 bacterial isolates inhibited the growth of R. microporous, and each has a different inhibitory zone. Based on the percentage of inhibition value, the highest percentage occurred in P.K1(41.1%), P. K2 (50%), dan EPBj II. K6 (42.2%). The antagonist test indicator includes the formation of inhibitory zones on the medium. Hemolysis test showed that yeast and bacteria are not able to break down blood cells in the medium. The molecular identification showed that P. K1 and P. K2 isolates were classified as Bacillus subtillis and EPBj II. K6 were identified as Bacillus aerius with 100% sequence homology and 99% bootstrap value respectively. These findings provided information about potential microbes that control white root fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.