In this correspondence, we propose a wavelet-based hierarchical approach using mutual information (MI) to solve the correspondence problem in stereo vision. The correspondence problem involves identifying corresponding pixels between images of a given stereo pair. This results in a disparity map, which is required to extract depth information of the relevant scene. Until recently, mostly correlation-based methods have been used to solve the correspondence problem. However, the performance of correlation-based methods degrades significantly when there is a change in illumination between the two images of the stereo pair. Recent studies indicate MI to be a more robust stereo matching metric for images affected by such radiometric distortions. In this short correspondence paper, we compare the performances of MI and correlation-based metrics for different types of illumination changes between stereo images. MI, as a statistical metric, is computationally more expensive. We propose a wavelet-based hierarchical technique to counter the increase in computational cost and show its effectiveness in stereo matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.