This paper reviews the most recent and relevant research into the variability characteristics of wind and solar power resources in Europe. The background for this study is that wind and solar resources will probably constitute major components of the future European power system. Such resources are variable, and EU plans to balance the variability with more grids and demand response. Thus, planning for the future power system requires an in-depth understanding of the variability. Resource variability is a multi-faceted concept best described using a range of distinct characteristics, and this review is structured on the basis of seven of these: Distribution Long-Term (hours to years), Distribution Short-Term (less than one hour), Step Changes, Autocorrelation, Spatial Correlation, Cross Correlation and Predictable Patterns. The review presents simulations and empirical results related to resource variability for each of these characteristics. Results to date reveal that the variability characteristics of the future power system is limited understood. This study recommends the development of a scheme for greater systematic assessment of variability. Such a scheme will contribute to the understanding of the impacts of variability and will make it possible to compare alternative power production portfolios and impacts of grid expansions, demand response and storage technologies.
Future power production in Europe is expected to include large shares of variable wind and solar power production. Norway, with approximately half of the hydropower reservoir capacity in Europe, can contribute to balance the variability. The aim of this paper is to assess how such a role may impact the Norwegian hydropower system in terms of production pattern of the plants, changes in reservoir level and water values. The study uses a stochastic optimization and simulation model and analyses an eHighway2050 scenario combined with increases in the hydropower production capacities in Norway. The capacity increases from ca. 31 GW in the present system to 42 and 50 GW respectively. The study uses 75 years with stochastic wind, solar radiation, temperature and inflow data. The results show that the hydropower system is able to partly balance the variable production and significantly reduce the power prices for the analyzed case. The paper shows that some of the power plants utilize their increased capacity, while other plants do not due to hydrological constraints and model limitations. The paper discusses how the modelling can be further improved in order to quantify more of the potential impacts on the future power system.
The CO2 emissions from a building’s power system will change over the life time of the building, and this need to be taken into account to verify whether a building is Zero Emission (ZEB) or not.
This paper describes how conversion factors between electricity demand and emissions can be calculated for the European power system in a long term perspective through the application of a large scale electricity market model (EMPS). Examples of two types of factors are given: a conversion factor for average emissions per kWh for the whole European power system as well as a marginal factor for a specific region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.