We consider how cohomological invariants determined by FpG can be used to shed some new light on the modular isomorphism problem. In particular, we give a new class C of ÿnite p-groups which can be distinguished using FpG.
Dette verket omfattes av bestemmelsene i Lov om opphavsretten til åndsverk m.v. av 1961. Verket utgis Open Access under betingelsene i Creative Commons-lisensen CC-BY 4.0 (http://creativecommons.org/licenses/by/4.0/). Denne tillater tredjepart å kopiere, distribuere og spre verket i hvilket som helst medium eller format, og å remixe, endre, og bygge videre på materialet til et hvilket som helst formål, inkludert kommersielle, under betingelse av at korrekt kreditering og en lenke til lisensen er oppgitt, og at man indikerer om endringer er blitt gjort. Tredjepart kan gjøre dette på enhver rimelig måte, men uten at det kan forstås slik at lisensgiver bifaller tredjepart eller tredjeparts bruk av verket.Boka er utgitt med støtte fra Universitetet i Oslo ved Institutt for laererutdanning og skoleforskning (ILS).
This is a report of an analysis of some of the data generated by a national survey of teaching approaches used in higher education mathematics courses. The overall purpose of the survey was to explore how widespread is the use of teaching approaches that might promote students’ active learning of mathematics. The paper includes a brief presentation of the authors meaning of the expression “teaching actions that have the potential to promote active learning”. The analysis focuses on the responses of 95 lecturers working in 13 Norwegian HE institutions. The goal is to expose underlying patterns in lecturers’ responses to questions about the teaching actions they may incorporate in their practice. The analysis incorporates descriptive statistics (e.g., mean scores) and exploratory factor analysis to expose underlying reasons for patterns of lecturers’ responses. Qualitative, interpretative approaches are used, both in the design of the survey instrument and in making sense of the outcome from the statistical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.