In this study, the novel iCE radiotherapy treatment planning system (TPS) for automated multi-criterial planning with integrated beam angle optimization (BAO) was developed, and applied to optimize organ at risk (OAR) sparing and systematically investigate the impact of beam angles on radiotherapy dose in locally advanced non-small cell lung cancer (LA-NSCLC). iCE consists of an in-house, sophisticated multi-criterial optimizer with integrated BAO, coupled to a broadly used commercial TPS. The in-house optimizer performs fluence map optimization to automatically generate an intensity-modulated radiotherapy (IMRT) plan with optimal beam angles for each patient. The obtained angles and dose-volume histograms are then used to automatically generate the final deliverable plan with the commercial TPS. For the majority of 26 LA-NSCLC patients, iCE achieved improved heart and esophagus sparing compared to the manually created clinical plans, with significant reductions in the median heart Dmean (8.1 vs. 9.0 Gy, p = 0.02) and esophagus Dmean (18.5 vs. 20.3 Gy, p = 0.02), and reductions of up to 6.7 Gy and 5.8 Gy for individual patients. iCE was superior to automated planning using manually selected beam angles. Differences in the OAR doses of iCE plans with 6 beams compared to 4 and 8 beams were statistically significant overall, but highly patient-specific. In conclusion, automated planning with integrated BAO can further enhance and individualize radiotherapy for LA-NSCLC.
Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT). Three PBS-PT plans were created per patient: 3D robust single-field uniform dose (SFUD), 3D robust intensity-modulated proton therapy (IMPT), and 4D robust IMPT (4DIMPT). These were exposed to setup and range uncertainties and breathing motion at Plan, and changes in breathing motion and anatomy at Start. Target coverage and dose-volume parameters relevant for toxicity were compared. The organ at risk sparing at Plan was greatest with IMPT, followed by 4DIMPT, SFUD and IMRT, and persisted at Start. All plans met the preset criteria for target robustness at Plan. At Start, three patients had a lack of CTV coverage with PBS-PT. In conclusion, the clinical potential for heart and lung toxicity reduction with PBS-PT was substantial and persistent. Altered breathing patterns between Plan and Start jeopardized target coverage for all PBS-PT techniques.
BackgroundState-of-the-art radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC) is performed with intensity-modulation during free breathing (FB). Previous studies have found encouraging geometric reproducibility and patient compliance of deep inspiration breath hold (DIBH) radiotherapy for LA-NSCLC patients. However, dosimetric comparisons of DIBH with FB are sparse, and DIBH is not routinely used for this patient group. The objective of this simulation study was therefore to compare DIBH and FB in a prospective cohort of LA-NSCLC patients treated with intensity-modulated radiotherapy (IMRT).MethodsFor 38 LA-NSCLC patients, 4DCTs and DIBH CTs were acquired for treatment planning and during the first and third week of radiotherapy treatment. Using automated planning, one FB and one DIBH IMRT plan were generated for each patient. FB and DIBH was compared in terms of dosimetric parameters and NTCP. The treatment plans were recalculated on the repeat CTs to evaluate robustness. Correlations between ΔNTCPs and patient characteristics that could potentially predict the benefit of DIBH were explored.ResultsDIBH reduced the median Dmean to the lungs and heart by 1.4 Gy and 1.1 Gy, respectively. This translated into reductions in NTCP for radiation pneumonitis grade ≥2 from 20.3% to 18.3%, and for 2-year mortality from 51.4% to 50.3%. The organ at risk sparing with DIBH remained significant in week 1 and week 3 of treatment, and the robustness of the target coverage was similar for FB and DIBH. While the risk of radiation pneumonitis was consistently reduced with DIBH regardless of patient characteristics, the ability to reduce the risk of 2-year mortality was evident among patients with upper and left lower lobe tumors but not right lower lobe tumors.ConclusionCompared to FB, DIBH allowed for smaller target volumes and similar target coverage. DIBH reduced the lung and heart dose, as well as the risk of radiation pneumonitis and 2-year mortality, for 92% and 74% of LA-NSCLC patients, respectively. However, the advantages varied considerably between patients, and the ability to reduce the risk of 2-year mortality was dependent on tumor location. Evaluation of repeat CTs showed similar robustness of the dose distributions with each technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.