The detection of cell-bound proteins that are produced due to aberrant gene expression in malignant tumors can provide important diagnostic information influencing patient management. The use of small radiolabeled targeting proteins would enable high-contrast radionuclide imaging of cancers expressing such antigens if adequate binding affinity and specificity could be provided. Here, we describe a HER2-specific 6 kDa Affibody molecule (hereinafter denoted Affibody molecule) with 22 pmol/L affinity that can be used for the visualization of HER2 expression in tumors in vivo using gamma camera. A library for affinity maturation was constructed by re-randomization of relevant positions identified after the alignment of first-generation variants of nanomolar affinity (50 nmol/L). One selected Affibody molecule, Z HER2:342 showed a >2,200-fold increase in affinity achieved through a single-library affinity maturation step. When radioiodinated, the affinity-matured Affibody molecule showed clear, high-contrast visualization of HER2-expressing xenografts in mice as early as 6 hours post-injection. The tumor uptake at 4 hours post-injection was improved 4-fold (due to increased affinity) with 9% of the injected dose per gram of tissue in the tumor. Affibody molecules represent a new class of affinity molecules that can provide small sized, high affinity cancer-specific ligands, which may be well suited for tumor imaging. (Cancer Res 2006; 66(8): 4339-48)
Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.
The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.