Osteogenesis Imperfecta (OI) is a heritable disorder of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations1. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms2. Here, we show that excessive transforming growth factor-beta (TGFβ) signaling is a mechanism of OI in both recessive (Crtap−/−) and dominant (Col1a2tm1.1Mcbr) OI mouse models. In the skeleton, we find higher expression of TGFβ target genes, ratio of pSmad2/Smad2 protein, and in vivo Smad2 reporter activity. Anti-TGFβ treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI, and improves the lung abnormalities in Crtap−/− mice. Moreover, type I collagen of Crtap−/− mice shows reduced binding to the small leucine rich proteoglycan decorin, a known regulator of TGFβ activity3–4. Hence, altered TGFβ matrix-cell signaling is a primary mechanism in the pathogenesis of OI, and could be a promising target for the treatment of OI.
This study investigates the effects of kyphoplasty on pain and mobility in patients with osteoporosis and painful vertebral fractures compared with conventional medical management.Introduction: Pharmacological treatment of patients with primary osteoporosis does not prevent pain and impaired activity of patients with painful vertebral fractures. Therefore, we evaluated the clinical outcome after kyphoplasty in patients with vertebral fractures and associated chronic pain for >12 months. Materials and Methods: Sixty patients with primary osteoporosis and painful vertebral fractures presenting for >12 months were included in this prospective, nonrandomized controlled study. Twenty-four hours before performing kyphoplasty, the patients self-determined their inclusion into the kyphoplasty or control group so that 40 patients were treated with kyphoplasty, whereas 20 served as controls. This study assessed changes in radiomorphology, pain visual analog scale (VAS) score, daily activities (European Vertebral Osteoporosis Study [EVOS] score), number of new vertebral fractures, and health care use. Outcomes were assessed before treatment and at 3 and 6 months of follow-up. All patients received standard medical treatment (1g calcium, 1000 IE vitamin D 3 , standard dose of oral aminobisphosphonate, pain medication, physical therapy). Results: Kyphoplasty increased midline vertebral height of the treated vertebral bodies by 12.1%, whereas in the control group, vertebral height decreased by 8.2% (p ס 0.001). Augmentation and internal stabilization by kyphoplasty resulted in a reduction of back pain. VAS pain scores improved in the kyphoplasty group from 26.2 ± 2 to 44.2 ± 3.3 (SD; p ס 0.007) and in the control group from 33.6 ± 4.1 to 35.6 ± 4.1 (not significant), whereas the EVOS score increased in the kyphoplasty group from 43.8 ± 2.4 to 54.5 ± 2.7 (p ס 0.031) and in the control group from 39.8 ± 4.5 to 43.8 ± 4.6 (not significant). The number of back pain-related doctor visits within the 6-month follow-up period decreased significantly after kyphoplasty compared with controls: mean of 3.3 visits/patient in the kyphoplasty group and a mean of 8.6 visits/patient in the control group (p ס 0.0147). Conclusions:The results of this study show significantly increased vertebral height, reduced pain, and improved mobility in patients after kyphoplasty. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.
Highlights d Mx1 and aSMA combination selectively labels SSCs resident in adult periosteum (P-SSC) d Mx1 + aSMA + P-SSCs are long-term repopulating and functionally distinct SSCs d Mx1 + aSMA + P-SSCs and human P-SSCs specifically express the CCL5 receptor CCR5 d CCL5 induces P-SSC migration in vivo, and its loss delays bone healing
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I procollagen or by recessively inherited mutations in genes responsible for the posttranslational processing/trafficking of type I procollagen. Recessive OI type VI is unique among OI types in that it is characterized by an increased amount of unmineralized osteoid, thereby suggesting a distinct disease mechanism. In a large consanguineous family with OI type VI, we performed homozygosity mapping and next-generation sequencing of the candidate gene region to isolate and identify the causative gene. We describe loss of function mutations in serpin peptidase inhibitor, clade F, member 1 (SERPINF 1) in two affected members of this family and in an additional unrelated patient with OI type VI. SERPINF1 encodes pigment epithelium-derived factor. Hence, loss of pigment epithelium-derived factor function constitutes a novel mechanism for OI and shows its involvement in bone mineralization. © 2011 American Society for Bone and Mineral Research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.