Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion.
Notch signaling is a central mechanism for controlling embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and specifically, in bone homeostasis remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis due to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by up-regulating Cyclin D, Cyclin E, and Osterix. Notch also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all physiologic Notch signaling in osteoblasts, generated by deletion of Presenilin 1 and 2 in bone, is associated with late onset, age-related osteoporosis resulting from increased osteoblast-dependent osteoclastic activity due to decreased production of Osteoprotegerin. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications.Evolutionarily conserved Notch signaling plays a critical role in cell fate determination, and various developmental processes by translating cell-cell interactions into specific transcriptional programs 1, 2 . Temporal and spatial modulation of this pathway can significantly affect proliferation, differentiation and apoptotic events 3 . Moreover, the timing of Notch signaling can lead to diverse effects within the same cell lineage 4, 5 . In mammals, activation of up to four Notch receptors by membrane-bound ligands initiates a process leading to presenilin-mediated cleavage and release of the Notch intracellular domain (NICD) from the membrane that then traffics to the nucleus. NICD subsequently regulates the expression of genes in cooperation with the transcription factor RBP-Jκ and Mastermind-like proteins.The observation that mutations in the Notch ligand Delta homologue-3 (Dll-3) and γ-secretase Presenilin1 both cause axial skeletal phenotypes originally linked Notch signaling with skeletal development 6, 7 . Recently, several in vitro studies with conflicting results implicated the Notch pathway in the regulation of osteoblast differentiation, but the in vivo role of Notch signaling in bone homeostasis still remains unknown 8-12 .Corresponding Author: Brendan Lee, M.D., Ph.D., One Baylor Plaza, Rm 635E, Houston, Tx 77030,, Email E-mail: blee@bcm.tmc.edu. In this study, we investigate the tissue, cellular, and molecular consequences of both gain and loss of function of Notch signaling in committed osteoblasts. NIH Public Access RESULTS Gain of function of Notch signaling results in severe osteosclerosisTo determine the pathological consequences of in vivo gain of Notch function during bone formation and homeostasis, we generated transgenic mice expressing the Notch1 intracellular domain (N1ICD) under the control of the type I collagen (Col1a1) promoter (Suppl. Fig. 1a,b). Here, gain of Notch function would occur in committed osteoblastic ce...
Osteogenesis Imperfecta (OI) is a heritable disorder of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations1. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms2. Here, we show that excessive transforming growth factor-beta (TGFβ) signaling is a mechanism of OI in both recessive (Crtap−/−) and dominant (Col1a2tm1.1Mcbr) OI mouse models. In the skeleton, we find higher expression of TGFβ target genes, ratio of pSmad2/Smad2 protein, and in vivo Smad2 reporter activity. Anti-TGFβ treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI, and improves the lung abnormalities in Crtap−/− mice. Moreover, type I collagen of Crtap−/− mice shows reduced binding to the small leucine rich proteoglycan decorin, a known regulator of TGFβ activity3–4. Hence, altered TGFβ matrix-cell signaling is a primary mechanism in the pathogenesis of OI, and could be a promising target for the treatment of OI.
During bone homeostasis, osteoblast and osteoclast differentiation is coupled and regulated by multiple signaling pathways and their downstream transcription factors. Here, we show that microRNA 34 (miR-34) is significantly induced by BMP2 during osteoblast differentiation. In vivo, osteoblast-specific gain of miR-34c in mice leads to an age-dependent osteoporosis due to the defective mineralization and proliferation of osteoblasts and increased osteoclastogenesis. In osteoblasts, miR-34c targets multiple components of the Notch signaling pathway, including Notch1, Notch2 and Jag1 in a direct manner, and influences osteoclast differentiation in a non-cell-autonomous fashion. Taken together, our results demonstrate that miR-34c is critical during osteoblastogenesis in part by regulating Notch signaling in bone homeostasis. Furthermore, miR-34c-mediated post-transcriptional regulation of Notch signaling in osteoblasts is one possible mechanism to modulate the proliferative effect of Notch in the committed osteoblast progenitors which may be important in the pathogenesis of osteosarcomas. Therefore, understanding the functional interaction of miR-34 and Notch signaling in normal bone development and in bone cancer could potentially lead to therapies modulating miR-34 signaling.
ATM (ataxia telangiectasia-mutated) and ATR (ATM-Rad3-related) are proximal checkpoint kinases that regulate DNA damage response (DDR). Identification and characterization of ATM/ATR substrates hold the keys for the understanding of DDR. Few techniques are available to identify protein kinase substrates. Here, we screened for potential ATM/ATR substrates using phospho-specific antibodies against known ATM/ ATR substrates. We identified proteins cross-reacting to phospho-specific antibodies in response to DNA damage by mass spectrometry. We validated a subset of the candidate substrates to be phosphorylated in an ATM/ATR-dependent manner in vivo. Combining with a functional checkpoint screen, we identified proteins that belong to the ubiquitin-proteasome system (UPS) to be required in mammalian DNA damage checkpoint control, particularly the G 1 cell cycle checkpoint, thus revealing protein ubiquitylation as an important regulatory mechanism downstream of ATM/ATR activation for checkpoint control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.