A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.
Using gated optical spectroscopy at low temperatures, a polyspirobifluorene has been compared with an alternating carbazole-spirobifluorene copolymer in which the backbone conjugation is interrupted due to meta coupling of the carbazole moieties. In the copolymer both singlet and triplet energy levels are blueshifted by 130 meV with respect to the homopolymer, resulting in an unaltered singlet-to-triplet splitting. Though the barrier for triplet exciton migration increases from 4.4 to 6.0 meV for the copolymer compared to the homopolymer, it still remained low enough to ensure efficient triplet diffusion at ambient temperature.
The purity of OLED materials is examined by various analytical tools down to ppm level. Especially halogenated impurities are found to have a significant effect on device performance. HPLC-MS coupling methods are needed to identify those harmful impurities. Three case studies are described, but the results are likely to be representative for most classes of OLED materials.
Faraday rotation up to 20 kGaul3 was measured on amorphous selenium in the spectra range between 690 and 930 mtz. From these measurements an effective mass was calculated to (8 • 1,5)m0-It is shown that the dispersion in amorphous selenium is caused by bounded carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.