Allanblackia genus, an endless source of bioactive compounds, was investigated for its antibacterial properties. The chemical study of the methanol extract from the fruits of Allanblackia gabonensis resulted in the isolation of the undescribed guttiferone BL (1) along with the known kaempferol (2), morelloflavone (3), morelloflavone 7″-O-β-D-glucopyranoside (4), β-sitosterol 3-O-β-D-glucopyranoside and β-sitosterol. Their structures were determined using spectrometry and spectroscopic techniques. The antibacterial activity was evaluated against five Gram-negative and two Gram-positive strains using a broth micro-dilution method. Compounds displayed low to significant activity against the tested bacterial strains with MICs ranging from 8 to 512 μg/mL. Morelloflavone (3) presented significant activity against E. coli ATCC8739 (MIC = 8 μg/mL) while guttiferone BL (1) exhibited low activity (MICs = 256-512 μg/mL) against all the tested strains. The crude extract also had moderate to significant activity against the tested bacterial strains.
The phytochemical study of the ethanol extract from Crinum distichum Herb. was carried out using reversed phase high performance liquid chromatography and afforded a new natural flavan (1), along with (2S)-4'-hydroxy-7-methoxyflavan (2), (2R)-4´-hydroxy-5,7-dimethoxyflavan (3), hippadine (4) and hippacine(5). The structure of the new compound was elucidated using a combination of NMR and HRESI-MS analysis while the structures of the known compounds were established by comparison of their spectroscopic data with those of similar reported compounds. Compounds 2-5 also had moderate activity (32> MIC> 16 µg/mL) against methicillin resistant (MRSA) and methicillin sensitive (MSSA) Staphylococcus aureus (both Gram-positive bacteria), whilst compound 1 was inactive against these two bacterial strains (MIC>128µg/mL). None of the compounds was active against the Gram-negative bacterial strains Escherichia coli and Klesbesiella pneumoniae. The research described herein confirms once more that, plants of the Crinum genus continue to be a rich and underexploited source of new small molecules that could lead to the discovery of new bioactive compounds.
Rothmannia talbotii, a hitherto chemically unexplored medicinal plant, is used in the Western Region of Cameroon to relieve fever. In our ongoing search for bioactive compounds from Cameroonian medicinal plants, a previously undescribed compound rothtalazepane (1), along with six known compounds, aitchisonide B (2), D-mannitol (3), β-D-glucopyranosyl-(6→1’)-β-D-glucopyranoside (4), monopalmitin (5), stigmasterol (6), and sitosterol 3- O-β-D-glucopyranoside (7) were isolated and characterized from the crude ethanol extract of the wood of R. talbotii. Rothtalazepane (1) exhibits no significant activity against several microbial strains, thus its function likely lies not in antimicrobial defense and it is not the active principle against urinary infections described for Rothmannia.
COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines.However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (M pro ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 M pro . Twentyfive compounds inhibited M pro with inhibitory constant values (K i ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of M pro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.
Despite the recent advancement of treatment strategies, cancer ranks 2nd among the causes of death globally. Phytochemicals have gained popularity as an alternate therapeutic strategy due to their nontoxic nature. Here, we have investigated the anticancer properties of guttiferone BL (GBL) along with four known compounds previously isolated from Allanblackia gabonensis. The cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The study was extended for the assessment of the effect of GBL in PA-1 cells apoptosis induction, cell cycle distribution, and change in mitochondrial membrane potential using flow cytometry, Western blot analysis, and real-time PCR. Among the five tested compounds, GBL displayed significant antiproliferative effects against all tested human cancer cells ( I C 50 < 10 μ M ). Moreover, GBL exhibited no significant cytotoxicity towards normal ovarian epithelial cell line (IOSE 364) up to 50 μM. GBL induced sub-G0 cell cycle arrest and significant upregulation of cell cycle regulatory proteins of ovarian cancer cell PA-1. Furthermore, GBL induced its apoptosis as depicted by the accumulation of cells both at the early and late apoptotic phase in Annexin V/PI assay. In addition, it decreased the PA-1 mitochondrial membrane potential and promoted upregulation of caspase-3, caspase-9, and Bax and downregulation of Bcl-2. GBL also showed a dose-dependent inhibition of PA-1 migration. Altogether, this study reveals that guttiferone BL, studied herein for the first time, exhibits efficient antiproliferative activity by the induction of apoptosis through the mitochondrial-dependent pathway. Its investigation as a therapeutic agent against human cancers especially ovarian cancer should be envisaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.