Currently, no approved monoclonal antibody (mAb) therapies exist for human multiple myeloma (MM). Here we characterized cell surface CS1 as a novel MM antigen and further investigated the potential therapeutic utility of HuLuc63, a humanized anti-CS1 mAb, for treating human MM. CS1 mRNA and protein was highly expressed in CD138-purified primary tumor cells from the majority of MM patients (more than 97%) with low levels of circulating CS1 detectable in MM patient sera, but not in healthy donors. CS1
Abstract. Glycosyl-phosphatidylinositol-(GPI) anchored proteins contain a large extracellular protein domain that is linked to the membrane via a glycosylated form of phosphatidylinositol. We recently reported the polarized apical distribution of all endogenous GPI-anchored proteins in the MDCK cell line (Lisanti, M. P., M. Sargiacomo, L. Graeve, A. R. Saltiel, and E. Rodriguez-Boulan. 1988. Proc. Natl. Acad. Sci. USA. 85:9557-9561). To study the role of this mechanism of membrane anchoring in targeting to the apical cell surface, we use here decay-accelerating factor (DAF) as a model GPI-anchored protein. Endogenous DAF was localized on the apical surface of two human intestinal cell lines (Caco-2 and SK-CO15). Recombinant DAF, expressed in MDCK cells, also assumed a polarized apical distribution. Transfer of the 37-amino acid DAF signal for GPI attachment to the ectodomain of herpes simplex glycoprotein D (a basolateral antigen) and to human growth hormone (a regulated secretory protein) by recombinant DNA methods resulted in delivery of the fusion proteins to the apical surface of transfected MDCK cells. These results are consistent with the notion that the GPI anchoring mechanism may convey apical targeting information.
REK7 is an Eph-related tyrosine kinase receptor expressed exclusively in the nervous system, predominantly in hippocampus and cortex. A soluble REK7-IgG fusion protein, produced to analyze the biological role of REK7, prevents axon bundling in cocultures of cortical neurons with astrocytes, a model of late stage nervous system development and differentiation. Using REK7-IgG as an affinity reagent, we purified and cloned a novel REK7 ligand called AL-1, a GPI-linked protein homologous to other members of an emerging ligand family. Membrane attachment of AL-1 appears necessary for receptor activation, since REK7 on cortical neurons is efficiently activated by transfected cells expressing GPI-linked AL-1, but not by soluble AL-1. Consistent with this, soluble AL-1 blocks axon bundling. Our findings, together with the observation that both molecules are expressed in the brain, suggest a role in the formation of neuronal pathways, a crucial feature of nervous system development and regeneration.
Human macrophages mediate the dissolution of elastic lamina by mobilizing tissue-destructive cysteine proteinases. While macrophage-mediated elastin degradation has been linked to the expression of cathepsins L and S, these cells also express cathepsin K, a new member of the cysteine proteinase family whose elastinolytic potential exceeds that of all known elastases. To determine the relative role of cathepsin K in elastinolysis, monocytes were differentiated under conditions in which they recapitulated a gene expression profile similar to that observed at sites of tissue damage in vivo. After a 12-d culture period, monocyte-derived macrophages (MDMs) expressed cathepsin K in tandem with cathepsins L and S. Though cysteine proteinases are acidophilic and normally confined to the lysosomal network, MDMs secreted cathepsin K extracellularly in concert with cathepsins L and S. Simultaneously, MDMs increased the expression of vacuolar-type H+-ATPase components, acidified the pericellular milieu, and maintained extracellular cathepsin K in an active form. MDMs from a cathepsin K–deficient individual, however, retained the ability to express, process, and secrete cathepsins L and S, and displayed normal elastin-degrading activity. Thus, matrix-destructive MDMs exteriorize a complex mix of proteolytic cysteine proteinases, but maintain full elastinolytic potential in the absence of cathepsin K by mobilizing cathepsins L and S.
Decay-accelerating factor (DAF), a glycoprotein that is anchored to the cell membrane by phosphatidylinositol, binds activated complement fragments C3b and C4b, thereby inhibiting amplification of the complement cascade on host cell membranes. Here, we report the molecular cloning of human DAF from HeLa cells. Analysis of DAF complementary DNAs revealed two classes of DAF messenger RNA, one apparently derived from the other by a splicing event that causes a coding frameshift near the C terminus. The apparent 'intron' sequence contains an Alu family member and encodes contiguous protein sequence. Two DAF proteins are therefore possible, having divergent C-terminal domains which differ in their hydrophobicity. Both mRNAs are found on polysomes, suggesting that both are translated. We propose that the major (90%) spliced DAF mRNA encodes membrane-bound DAF whereas the minor (10%) unspliced DAF mRNA may encode secreted DAF and we present expression data supporting this. The deduced DAF sequence contains four repeating units homologous to a consensus repeat found in a recently described family of complement proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.