BackgroundThere is no standardized procedure or consensus to which tests should be performed to judge compatibility/incompatibility of intravenous drugs. The purpose of this study was to establish and evaluate a test program of methods suitable for detection of physical incompatibility in Y-site administration of total parenteral nutrition (TPN) and drugs.MethodsEight frequently used methods (dynamic light scattering, laser diffraction, light obscuration, turbidimetry, zeta potential, light microscopy, pH-measurements and visual examination using Tyndall beams), were scrutinized to elucidate strengths and weaknesses for compatibility testing. The responses of the methods were tested with samples containing precipitation of calcium phosphate and with heat destabilized TPN emulsions. A selection of drugs (acyclovir, ampicillin, ondansetron and paracetamol) was mixed with 3-in-1 TPN admixtures (Olimel® N5E, Kabiven® and SmofKabiven®) to assess compatibility (i.e. potential precipitates and emulsion stability). The obtained compatibility data was interpreted according to theory and compared to existing compatibility literature to further check the validity of the methods.ResultsLight obscuration together with turbidimetry, visual inspection and pH-measurements were able to capture signs of precipitations. For the analysis of emulsion stability, light obscuration and estimation of percent droplets above 5 μm (PFAT5) seemed to be the most sensitive method; however laser diffraction and monitoring changes in pH might be a useful support. Samples should always be compared to unmixed controls to reveal changes induced by the mixing. General acceptance criteria are difficult to define, although some limits are suggested based on current experience. The experimental compatibility data was supported by scattered reports in literature, further confirming the suitability of the test program. However, conflicting data are common, which complicates the comparison to existing literature.ConclusionsTesting of these complex blends should be based on a combination of several methods and accompanied by theoretical considerations.
16The choice of drug therapy in pregnant patients suffering from vaginal infections is limited 17 by the safety profile of the drug. Assuring the efficient topical therapy to avoid systemic 18 absorption is considered the best therapy option. Chitosan-coated liposomes have been 19 developed and optimized to assure localized therapy of clotrimazole. Chitosan was selected 20 as mucoadhesive polymer both to prolong system's retention at the vaginal site and act on 21 biofilms responsible for high recurrence of infections. Sonicated liposomes were coated 22 with chitosan in three different concentrations, namely 0.1, 0.3 and 0.6 % (w/v).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.