Resveratrol (RES), chemically known as 3,5,4'-trihydroxy-transstilbene, is a promising multi-targeted anti-oxidative and antiinflammatory natural polyphenol. Preclinical studies showed its biological activities against the pathogens of sexually transmitted diseases causing vaginal inflammation and infections. Due to its low solubility and poor bioavailability, the optimal therapeutic uses are limited. Therefore, a clinically acceptable topical vaginal formulation of RES exhibiting optimal therapeutic effects is highly desirable. For this purpose, we prepared and optimized chitosan-coated liposomes with RES. The coated vesicles (mean diameter 200 nm) entrapped up to 77% of RES, a sufficient load to assure required therapeutic outcome. In vitro drug release study showed the ability of liposomes to provide sustained release of RES. In vitro anti-oxidative activities of RES, namely DPPH and ABTS*+ radicals scavenging assays, confirmed RES to be as potent as standard anti-oxidants, vitamins C and E. The anti-oxidative activities of RES and its corresponding liposomal formulation were also compared by measuring enhanced superoxide dismutase (SOD) activities in lipopolysaccharide (LPS)-induced J774A.1 cells. In vitro antiinflammatory activities were compared by measuring nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in LPSinduced J774A.1 cells. Liposomal RES was found to exhibit stronger antioxidative and anti-inflammatory activities than RES solution. Resveratrol (RES), chemically known as 3,5,4'-trihydroxy-trans-stilbene, is a 18 promising multi-targeted anti-oxidative and anti-inflammatory natural polyphenol. Preclinical 19 studies showed its biological activities against the pathogens of sexually transmitted diseases 20 causing vaginal inflammation and infections. Due to its low solubility and poor 21 bioavailability, the optimal therapeutic uses are limited. Therefore, a clinically acceptable 22 topical vaginal formulation of RES exhibiting optimal therapeutic effects is highly desirable. 7Corrections were made accordingly as mentioned on page 8, lines 210-217. 8 9Please discuss the possibility for using other polymers instead of chitosan. 11Some discussion was added on page 18, lines 551-555 12 13Spelling error -page 7, section 2.7., should be "Characterization…" instead of
16The choice of drug therapy in pregnant patients suffering from vaginal infections is limited 17 by the safety profile of the drug. Assuring the efficient topical therapy to avoid systemic 18 absorption is considered the best therapy option. Chitosan-coated liposomes have been 19 developed and optimized to assure localized therapy of clotrimazole. Chitosan was selected 20 as mucoadhesive polymer both to prolong system's retention at the vaginal site and act on 21 biofilms responsible for high recurrence of infections. Sonicated liposomes were coated 22 with chitosan in three different concentrations, namely 0.1, 0.3 and 0.6 % (w/v).
Natural polyphenols, such as resveratrol (RES) or epicatechin (EPI), are attractive for treatments of various diseases, including vaginal infections and inflammation, because of their strong anti-oxidative and anti-inflammatory properties. However, their low solubility and consequent poor bioavailability limit their therapeutic uses. To overcome these limitations, a vaginal delivery system comprising either RES or EPI liposomes-in-hydrogel was developed. This system permits therapeutic action of both liposomal polyphenol (RES or EPI) and chitosan-based hydrogel. Liposomes of around 200 nm and entrapment efficiency of 81% and 77% for RES and EPI, respectively, were incorporated into chitosan hydrogel, respectively. Medium molecular weight chitosan (2.5%, w/w) was found to have optimal texture properties and mucoadhesiveness in ex vivo conditions. The in vitro release studies confirmed the sustained release of polyphenols from the system. Both liposomal polyphenols and polyphenols-in-liposomes-in-hydrogel exhibited only minor effects on cell toxicity. EPI showed superior radical scavenging activity at lower concentrations compared to antioxidants vitamin C and E. Anti-inflammatory activity expressed as the inhibitory activity of formulations on the NO production in the LPS-induced macrophages (RAW 264.7) confirmed the superiority of EPI liposomes-in-hydrogel. The plain liposomes-in-hydrogel also exhibited potent anti-inflammatory activity, suggesting that chitosan hydrogel acts in synergy regarding anti-inflammatory effect of formulation.
Topical administration of drugs into the vagina can provide local therapy of vaginal infections, preventing the possible systemic side effects of the drugs. The natural polysaccharide chitosan is known for its excellent mucoadhesive properties, safety profile, and antibacterial effects, and thus it can be utilized in improving localized vaginal therapy by prolonging the residence time of a drug at the vaginal site while acting as an antimicrobial in synergy. Therefore, we aimed to explore the potential of chitosan, namely chitosan-coated liposomes and chitosan hydrogel, as an excipient with intrinsic antimicrobial properties. Liposomes were prepared by the thin-film hydration method followed by vesicle size reduction by sonication to the desired size, approximately 200 nm, and coated with chitosan (0.01, 0.03, 0.1, and 0.3%, w/v, respectively). The mucoadhesive properties of chitosan-coated liposomes were determined through their binding efficiency to mucin compared to non-coated liposomes. Non-coated liposomal suspensions were incorporated in chitosan hydrogels forming the liposomes-in-hydrogel formulations, which were further assessed for their texture properties in the presence of biological fluid simulants. The antibacterial effect of chitosan-coated liposomes (0.03%, 0.1% and 0.3%, w/v) and chitosan hydrogels (0.1% and 0.3%, w/w) on Staphylococcus epidermidis and Staphylococcus aureus was successfully confirmed.
Recent studies regarding mucosal drug delivery indicate that nanosystems with surface-available polyethylene glycol (PEG) are able to penetrate mucus barrier, assure closer contact with the epithelium, and improve drug delivery to vagina. In the present work, we developed the mucus-penetrating PEGylated liposomes containing interferon alpha-2b (IFN α-2b), destined to provide localized therapy for human papilloma virus (HPV) vaginal infections. The PEGylated liposomes were of a mean size of 181±8nm, bearing a negative zeta potential of - 13mV and an entrapment efficiency of 81±10%. In vitro release experiments on model membrane showed a nearly non-existent IFN α-2b release from both the control and liposomally-associated IFN α-2b. However, the ex vivo penetration studies performed on the vaginal tissue obtained from pregnant sheep, showed the clear elevated IFN α-2b penetration from PEGylated liposomes as compared to the control. Furthermore, mucin studies confirmed the absence of interaction between the PEG-modified liposomes and mucin, confirming their ability to penetrate mucus and reach the deeper epithelium. The system holds a promise in improving topical delivery of IFN α-2b through enhanced efficacy of local anti-viral therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.