Finding victims at a disaster site is the primary goal of Search-andRescue (SAR) operations. Many technologies created from research for searching disaster victims through aerial imaging. but, most of them are difficult to detect victims at tsunami disaster sites with victims and backgrounds which are look similar. This research collects post-tsunami aerial imaging data from the internet to builds dataset and model for detecting tsunami disaster victims. Datasets are built based on distance differences from features every sample using Histogram-of-Oriented-Gradient (HOG) method. We use the longest distance to collect samples from photo to generate victim and non-victim samples. We claim steps to collect samples by measuring HOG feature distance from all samples. the longest distance between samples will take as a candidate to build the dataset, then classify victim (positives) and non-victim (negatives) samples manually. The dataset of tsunami disaster victims was re-analyzed using crossvalidation Leave-One-Out (LOO) with Support-Vector-Machine (SVM) method. The experimental results show the performance of two test photos with 74.36% precision, 81.60% accuracy, 61.70% recall and fmeasure 67.44% to distinguish victim (positives) and non-victim (negatives).
Instability is one of the major defects in humanoid robots. Recently, various methods on the stability and reliability of humanoid robots have been studied actively. We propose a new fuzzy-logic control scheme for vision systems that would enable a robot to search for and to kick a ball towards an opponent goal. In this paper, a stabilization algorithm is proposed using the balance condition of the robot, which is measured using accelerometer sensors during standing and walking, and turning movement are estimated from these data. From this information the robot selects the appropriate motion pattern effectively. In order to generate the appropriate reaction in various body of robot situations, a fuzzy algorithm is applied in finding the appropriate angle of the joint from the vision system. The performance of the proposed algorithm is verified by searching for a ball, walking, turning tap and ball kicking movement experiments using an 18-DOF humanoid robot, called EFuRIO.
Hidroponik merupakan cara bercocok tanam yang tidak menggunakan tanah sebagai media tanam, tetapi hanya menggunakan air yang mengandung nutrisi. Pada pertumbuhan tanaman hidroponik dapat dipengaruhi oleh berbagai faktor, salah satunya adalah keterlambatan menambahkan nutrisi air hidropnik. Penelitian ini bertujuan untuk membuat sistem monitoring kadar nutrisi dan ketersediaan air dalam tandon hidroponik. Lalu mikrokontroler akan mengirim data tersebut dengan bantuan ESP8266 ke Firebase yang telah disediakan kemudian data yang di Firebase akan diteruskan ke android dengan teknologi Internet of Thing (IoT). Untuk tanaman yang digunakan adalah sayur selada yang memiliki nilai nutrisi sekitar 560 - 840 dalam satuan part per million (ppm). Hasil pengujian sensor TDS mampu mengukur kadar nutrisi mencapai 850 ppm dan sensor xkc-y25 dapat mendeteksi air dalam tandon penuh atau berkurang. Semua data sensor ini diukur secara realtime, serta dapat dimonitoring melalui android.
Dalam pendidikan, kehadiran merupakan hal yang sangat penting bagi dosen dan mahasiswa. Saat ini absensi yang digunakan pada perguruan tinggi masih menggunakan tanda tangan atau sidik jari sehingga terjadi kontak langsung dengan benda-benda tertentu. Namun di masa pandemi saat ini. mahasiswa,dan dosen diwajibkan untuk menjaga jarak serta tidak kontak fisik dengan benda yang digunakan bersama karena dapat menyebarkan virus dengan cepat. Mesin Absensi ini ditawarkan untuk membatasi kontak langsung serta menghambat penyebaran virus corona dengan menggunakan Radio Frequency Identification (RFID) sebagai metode identifikasi dengan pengontrol Raspberry pi. RFID akan menghasilkan kode unik yang dijadikan sebagai data user yang kemudian akan diproses dengan Raspberry pi kemudian data disimpan pada database. RFID dapat membaca reader dalam jangkauan 3 cm. Dari hasil pengujian mesin ini mampu mengenali 3 orang user yang didaftarkan dan memproses data dengan cepat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.