Objective. In electrophysiology, microelectrodes are the primary source for recording neural data (single unit activity). These microelectrodes can be implanted individually or in the form of arrays containing dozens to hundreds of channels. Recordings of some channels contain neural activity, which are often contaminated with noise. Another fraction of channels does not record any neural data, but only noise. By noise, we mean physiological activities unrelated to spiking, including technical artifacts and neural activities of neurons that are too far away from the electrode to be usefully processed. For further analysis, an automatic identification and continuous tracking of channels containing neural data is of great significance for many applications, e.g. automated selection of neural channels during online and offline spike sorting. Automated spike detection and sorting is also critical for online decoding in brain–computer interface (BCI) applications, in which only simple threshold crossing events are often considered for feature extraction. To our knowledge, there is no method that can universally and automatically identify channels containing neural data. In this study, we aim to identify and track channels containing neural data from implanted electrodes, automatically and more importantly universally. By universally, we mean across different recording technologies, different subjects and different brain areas. Approach. We propose a novel algorithm based on a new way of feature vector extraction and a deep learning method, which we call SpikeDeeptector. SpikeDeeptector considers a batch of waveforms to construct a single feature vector and enables contextual learning. The feature vectors are then fed to a deep learning method, which learns contextualized, temporal and spatial patterns, and classifies them as channels containing neural spike data or only noise. Main results. We trained the model of SpikeDeeptector on data recorded from a single tetraplegic patient with two Utah arrays implanted in different areas of the brain. The trained model was then evaluated on data collected from six epileptic patients implanted with depth electrodes, unseen data from the tetraplegic patient and data from another tetraplegic patient implanted with two Utah arrays. The cumulative evaluation accuracy was 97.20% on 1.56 million hand labeled test inputs. Significance. The results demonstrate that SpikeDeeptector generalizes not only to the new data, but also to different brain areas, subjects, and electrode types not used for training. Clinical trial registration number. The clinical trial registration number for patients implanted with the Utah array is NCT 01849822. For the epilepsy patients, approval from the local ethics committee at the Ruhr-University Bochum, Germany, was obtained prior to implantation.
In the presented work we compare machine learning techniques in the context of lane change behavior performed by humans in a semi-naturalistic simulated environment. We evaluate different learning approaches using differing feature combinations in order to identify appropriate feature, best feature combination, and the most appropriate machine learning technique for the described task. Based on the data acquired from human drivers in the traffic simulator NISYS TRS 1 , we trained a recurrent neural network, a feed forward neural network and a set of support vector machines. In the followed test drives the system was able to predict lane changes up to 1.5 sec in beforehand.
Objective. Advancements in electrode design have resulted in micro-electrode arrays with hundreds of channels for single cell recordings. In the resulting electrophysiological recordings, each implanted electrode can record spike activity (SA) of one or more neurons along with background activity (BA). The aim of this study is to isolate SA of each neural source. This process is called spike sorting or spike classification. Advanced spike sorting algorithms are time consuming because of the human intervention at various stages of the pipeline. Current approaches lack generalization because the values of hyperparameters are not fixed, even for multiple recording sessions of the same subject. In this study, a fully automatic spike sorting algorithm called "SpikeDeep-Classifier" is proposed. The values of hyperparameters remain fixed for all the evaluation data. Approach. The proposed approach is based on our previous study (SpikeDeeptector) and a novel background activity rejector (BAR), which are both supervised learning algorithms and an unsupervised learning algorithm (K-means). SpikeDeeptector and BAR are used to extract meaningful channels and remove BA from the extracted meaningful channels, respectively. The process of clustering becomes straightforward once the BA is completely removed from the data. Then, K-means with a predefined maximum number of clusters is applied on the remaining data originating from neural sources only. Lastly, a similarity-based criterion and a threshold are used to keep distinct clusters and merge similar looking clusters. The proposed approach is called cluster accept or merge (CAOM) and it has only two hyperparameters (maximum number of clusters and similarity threshold) which are kept fixed for all the evaluation data after tuning. Main Results. We compared the results of our algorithm with ground-truth labels. The algorithm is evaluated on data of human patients and publicly available labeled non-human primates (NHPs) datasets. The average accuracy of BAR on datasets of human patients is 92.3% which is further reduced to 88.03% after (Kmeans + CAOM). In addition, the average accuracy of BAR on a publicly available labeled dataset of NHPs is 95.40% which reduces to 86.95% after (K-mean + CAOM). Lastly, we compared the performance of the SpikeDeep-Classifier with two human experts, where SpikeDeep-Classifier has produced comparable results. Significance. The SpikeDeep-Classifier is evaluated on the datasets of multiple recording sessions of different species, different brain areas and different electrode types without further retraining. The results demonstrate that "SpikeDeep-Classifier" possesses the ability to generalize well on a versatile dataset and henceforth provides a generalized and fully automated solution to offline spike sorting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.