The response of the 2D detector array, MP512, has been evaluated. The properties of the array demonstrated suitability for use as in phantom dosimeter for QA in SRS and SBRT. Although MP512 matches film measurements down to 1×1 cm2 well, it showed a discrepancy of 4% in the determination of output factors of beams smaller than 0.5×0.5 cm2 due to the field perturbation generated by the large amount of silicon surrounding the central diode. MP512 is highly capable of measuring beam size (FWHM) and has a discrepancy of less than 1.3% when compared to EBT3 film. A reduction in the detector pitch to less than 2 mm would improve the penumbra reconstruction accuracy at the cost readout electronics complexity.
The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.
Microbeam Radiation Therapy (MRT) is a radiation treatment technique under development for inoperable brain tumors. MRT is based on the use of a synchrotron generated X-ray beam with an extremely high dose rate (∼ 20 kGy/sec), striated into an array of X-ray micro-blades. In order to advance to clinical trials, a real-time dosimeter with excellent spatial resolution must be developed for absolute dosimetry. The design of a real-time dosimeter for such a radiation scenario represents a significant challenge due to the high photon flux and vertically striated radiation field, leading to very steep lateral dose gradients. This article analyses the striated radiation field in the context of the requirements for temporal dosimetric measurements and presents the architecture of a new dosimetry system based on the use of silicon detectors and fast data acquisition electronic interface. The combined system demonstrates micrometer spatial resolution and microsecond real time readout with accurate sensitivity and linearity over five orders of magnitude of input signal. The system will therefore be suitable patient treatment plan verification and may also be expanded for in-vivo beam monitoring for patient safety during the treatment.
Our characterization of the designed QA "magic phantom" with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.
. (2015). The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance. Medical Physics, 42 (2), 663-673.The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance Abstract Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 x 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. Conclusions: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position-time gamma index allows for direct comparison of measured paramete...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.